Deribatu taula

Wikipedia(e)tik
Hona jo: nabigazioa, Bilatu

Kalkulu diferentzialean egiten den eragiketarik ohikoenetarikoa da funtzio baten deribatua aurkitzea. Taula honen laguntzaz esker edozein funtzio elementalen deribatua kalkula daiteke. Esan beharra dago, taulako f eta g funtzioak deribagarriak eta c zenbaki errealak direla suposatuko dela.

Funtzio orokorren deribaziorako arauak[aldatu | aldatu iturburu kodea]

Diferentzialaren linealtasuna
\left({cf}\right)' = cf'
\left({f + g}\right)' = f' + g'
\left({f - g}\right)' = f' - g'


Biderkaduraren deribatua
\left({fg}\right)' = f'g + fg'


Zatiduraren deribatua
\left({f \over g}\right)' = {f'g - fg' \over g^2}, \qquad g \ne 0


Funtzio potentzialaren deribatua
(f^g)' = \left(e^{g\ln f}\right)' = f^g\left(f'{g \over f} + g'\ln f\right),\qquad f>0


Funtzio konposatuaren edo katearen erregela
(f \circ g)' = (f' \circ g)g'


Logaritmoaren deribatua
f' = (\ln f)'f, \qquad f>0

Funtzio sinpleen deribatuak[aldatu | aldatu iturburu kodea]

{d \over dx} c = 0
{d \over dx} x = 1
{d \over dx} cx = c
{d \over dx} |x| = {|x| \over x} = \sgn x,\qquad x \ne 0
{d \over dx} x^c = cx^{c-1} \qquad \mbox{where both } x^c \mbox{ and } cx^{c-1} \mbox { are defined}
{d \over dx} \left({1 \over x}\right) = {d \over dx} \left(x^{-1}\right) = -x^{-2} = -{1 \over x^2}
{d \over dx} \left({1 \over x^c}\right) = {d \over dx} \left(x^{-c}\right) = -{c \over x^{c+1}}
{d \over dx} \sqrt{x} = {d \over dx} x^{1\over 2} = {1 \over 2} x^{-{1\over 2}}  = {1 \over 2 \sqrt{x}}, \qquad x > 0

Funtzio esponentzial eta logaritmikoen deribatuak[aldatu | aldatu iturburu kodea]

{d \over dx} c^x = {c^x \ln c},\qquad c > 0
{d \over dx} e^x = e^x
{d \over dx} \log_c x = {1 \over x \ln c},\qquad c > 0, c \ne 1
{d \over dx} \ln x = {1 \over x},\qquad x > 0
{d \over dx} \ln |x| = {1 \over x}
{d \over dx} x^x = x^x(1+\ln x)

Funtzio trigonometrikoen deribatuak[aldatu | aldatu iturburu kodea]

{d \over dx} \sin x = \cos x
{d \over dx} \cos x = -\sin x
{d \over dx} \tan x = \sec^2 x = { 1 \over \cos^2 x}
{d \over dx} \sec x = \tan x \sec x
{d \over dx} \cot x = -\csc^2 x = { -1 \over \sin^2 x}
{d \over dx} \csc x = -\csc x \cot x
{d \over dx} \arcsin x = { 1 \over \sqrt{1 - x^2}}
{d \over dx} \arccos x = {-1 \over \sqrt{1 - x^2}}
{d \over dx} \arctan x = { 1 \over 1 + x^2}
{d \over dx} \arcsec x = { 1 \over |x|\sqrt{x^2 - 1}}
{d \over dx} \arccot x = {-1 \over 1 + x^2}
{d \over dx} \arccsc x = {-1 \over |x|\sqrt{x^2 - 1}}


Funtzio hiperbolikoen deribatuak[aldatu | aldatu iturburu kodea]

{d \over dx} \sinh x = \cosh x
{d \over dx} \cosh x = \sinh x
{d \over dx} \tanh x = \operatorname{sech}^2\,x
{d \over dx}\,\operatorname{sech}\,x = - \tanh x\,\operatorname{sech}\,x
{d \over dx}\,\operatorname{coth}\,x = -\,\operatorname{csch}^2\,x
{d \over dx}\,\operatorname{csch}\,x = -\,\operatorname{coth}\,x\,\operatorname{csch}\,x
{d \over dx}\,\operatorname{arcsinh}\,x = { 1 \over \sqrt{x^2 + 1}}
{d \over dx}\,\operatorname{arccosh}\,x = { 1 \over \sqrt{x^2 - 1}}
{d \over dx}\,\operatorname{arctanh}\,x = { 1 \over 1 - x^2}
{d \over dx}\,\operatorname{arcsech}\,x = { -1 \over x\sqrt{1 - x^2}}
{d \over dx}\,\operatorname{arccoth}\,x = { 1 \over 1 - x^2}
{d \over dx}\,\operatorname{arccsch}\,x = {-1 \over |x|\sqrt{1 + x^2}}

.