Zenbaki oso

Wikipedia(e)tik
Hona jo: nabigazioa, Bilatu
Zenbakiak matematikan
Zenbaki multzoak
\mathbb{N}\sub\mathbb{Z}\sub\mathbb{Q}\sub\mathbb{R}\sub\mathbb{C}

Zenbaki arruntak \mathbb{N}
Zenbaki osoak \mathbb{Z}
Zenbaki arrazionalak \mathbb{Q}
Zenbaki irrazionalak
Zenbaki errealak \mathbb{R}
Zenbaki konplexuak \mathbb{C}
Zenbaki aljebraikoak
Zenbaki transzendenteak

Konplexuen hedadurak

Koaternioiak \mathbb{H}
Oktonioiak \mathbb{O}
Zenbaki hiperkonplexuak

Bestelakoak

Zenbaki kardinalak
Zenbaki ordinalak
Zenbaki lehenak
π = 3.141592654…
e = 2.718281828…
i unitate irudikaria
infinitua
Φ = 1,6180339887...

Zenbaki-sistemak

Zenbaki-sistema hamartarra
Zenbaki-sistema bitarra
Zenbaki-sistema hamaseitarra
Zenbaki-sistema zortzitarra

Zenbaki osoen multzoan zenbaki arruntak biltzen dira (0,1,2,...), beren aurkakoekin batera (-0,-1,-2,...). -0 eta 0 berdintzat jotzen dira. Zenbaki osoen multzoa Z hizkiaz izendatu ohi da ('Zahlen' germanierazko hitzetik). Zenbaki osoak batu, kendu eta biderkatu egin daitezke: emaitza beti izango da zenbaki oso bat.

x+a=b motako ekuazioen soluzioa, non a eta b zenbaki osoak diren, zenbaki osoa izango da. Zenbaki arrunten kasuan ez da esaterako gauza bera gertatzen. Zorrotzago, zenbaki osoen multzoak, batuketa eta biderketa eragiketak definitu ondoren, eraztun trukakorra osatzen duela esan behar da.

Commonsen badira fitxategi gehiago, gai hau dutenak: Zenbaki oso Aldatu lotura Wikidatan
Matematika Artikulu hau matematikari buruzko zirriborroa da. Wikipedia lagun dezakezu edukia osatuz.