Ekuazio

Wikipedia(e)tik
Hona jo: nabigazioa, Bilatu

Matematikan, ekuazioa ezezagun bat edo gehiago dituen berdintza aljebraikoa da, adibidez ekuazio bat da, non ezezaguna den. Zenbakizko berdintzetan (2+3=5, esaterako) ez bezala, ekuazioa ez da orohar egiazkoa ezezagunaren edozein baliotarako (aurreko ekuazioan adibidez, ). Horrela, ekuazioa ebaztea berdintza betetzen duten ezezagunen balioak aurkitzea da, ezezaguna aurkitzea alegia, ekuazioa identitate edo zenbakizko berdintza bihurtzeko (aurreko ekuazioan, ). Horrela, bakandu edo askatu egin dela esaten da.

Oro har, ezezagunak x, y, z, etab. hizkiez adierazten dira, eta konstanteak alfabetoko lehenengo hizkiez (a, b, c, eta abar).

Alfabeto-egiunez finkatzeko ideia, ezezagunak konstanteetatik desberdintzeko, François Viète matematikari frantziarrarena izan zen. François Viètek erabili zituen kontsonanteak aldagaietarako eta bokalak konstanteetarako.

Ekuazio motak[aldatu | aldatu iturburu kodea]

  • Aldagai edo ezezagun bakarreko ekuazioa: ezezagun horren balio egokiarentzat bakarrik egiaztatzen den ekuazioa; adibidez, 3x+1=10; x=3.
  • Aljebrako ekuazioa: ezezaguna aljebrako eragiketa arruntetara (batuketa, kenketa, biderketa, erroketa&) mendekotua duen ekuazioa. Aztertu ziren lehenengo ekuazioak aljebrakoak izan ziren; horretarako, hainbat polinomio berdindu ziren beren artean, balio ezezagunak argitzeko.
  • Ekuazio diferentziala, ezezagunak derinatu moduan agertzen direnean;
  • Integralen ekuazioa.
  • Aplikazio jakina duten ekuazioak ere badaude, aplikazio horren izenarekin izendatzen direnak; adibidez, mugimendu-ekuazioak, denbora-ekuazioak.

Erreferentziak[aldatu | aldatu iturburu kodea]

Wikimedia Commonsen badira fitxategi gehiago, gai hau dutenak: Ekuazio Aldatu lotura Wikidatan