Artikulu hau "Kalitatezko 1.000 artikulu 12-16 urteko ikasleentzat" proiektuaren parte da

Eragiketa (matematika)

Wikipedia, Entziklopedia askea
Jump to navigation Jump to search

Batuketa, kenketa, biderketa eta zatiketa eragiketak.

Eragiketa bat aljebran multzo baten elementuen gainean eragile baten aplikazioa da. Eragileak hasierako elementuak hartzen ditu eta beste elementuekin erlazionatzen ditu bukaerako multzo bat sortzeko; horri teknikoki konposizioaren legea deritzo.

Aritmetikan eta kalkuluan hasierako multzoaren osagaiak mota bakar batekoak edo zenbaitetakoak izan daitezke:

  • Mota bakarrekoak: eragiketa aritmetikoak soilik zenbakien gainean jokatzen dute.
  • Mota bat baino gehiagokoak: eskalar bat bider bektore baten produktuak espazio bektorial bat osatzen duten bektoreen eta eskalarren bilduren multzo osoa biltzen du.

Eragiketan parte hartzen duten taldeen arabera eta gure asmoen arabera, eragiketak bi motetan sailka ditzakegu: barnekoak eta kanpokoak.

Eragiketen propietateak[aldatu | aldatu iturburu kodea]

  • Batuketa operazioa (+)
    • idazten da
    • Trukakorra da:
    • Elkarkorra da:
    • Alderantzizko eragiketa bat du, kenketa: , aurkakoa gehitzearen bera dena,
    • 0 elementu neutroak ez du batura aldatzen:
  • Biderketa operazioa (×)
    • edo idazten da
    • n aldiz errepikatutako batuketa bat da:
    • Trukakorra da: =
    • Elkarkorra da:
    • Alborakuntza bitartez laburtzen da:
    • b≠0 diren zenbakientzako alderantzizko eragiketa bat du, zatiketa: , alderantzizkoa biderkatzearen bera dena,
    • 1 elementu neutroak ez du batura aldatzen:
    • Baturari dagokionez banakorra da:
  • Berreketa operazioa
    • idazten da
    • n aldiz errepikatutako biderketa bat da:
    • Ez da trukakorra ezta elkarkorra ere: orokorki eta
    • Alderantzizko eragiketa bat du, logaritmoa:
    • n-garren erro terminoetan idatz daiteke: eta, ondorioz, zenbaki negatiboen erro karratu bikoitiak ez dira existitzen zenbaki errealen sisteman. (Begiratu: [Zenbaki konplexu|Zenbaki konplexuen sistema]])
    • Biderketari dagokionez banakorra da:
    • Propietate hau du:
    • Propietatu hau du: [1]

Eragiketen ordena[aldatu | aldatu iturburu kodea]

Adierazpen baten balioa osatzeko ordena jakin batean kalkulatu behar dira bere zatiak, eragiketen lehentasun ordena deritzo. Lehenengo, elkartze-zeinuetan (parentesi, kortxete, giltzak) sartuta dauden espresioen balioak kalkulatzen dira, ondoren berreketak, gero biderketak eta zatidurak, eta azkenik, batuketak eta kenketak.

Berdintzaren propietateak[aldatu | aldatu iturburu kodea]

Berdintza (=) erlazioa:

  • Erreflexiboa da:
  • Simetrikoa da: bada orduan
  • iragankorra da: bada eta bada orduan

Berdintzaren legeak[aldatu | aldatu iturburu kodea]

Berdintza (=) erlazioak honako propietateak ditu:

  • bada eta bada orduan y
  • bada orduan
  • Bi zeinu berdinak badira, orduan bata bestea ordezkatu dezake.
  • Baturaren erregulartasuna: zenbaki errealekin edo konplexuekin lan egitean bada orduan .
  • Biderketaren baldintzazko erregulartasuna: bada eta ez da zero, orduan .

Desberdintzaren legeak[aldatu | aldatu iturburu kodea]

Desberdintza (<) erlazioak honako propietateak ditu:

  • Iragankortasuna: bada eta bada orduan
  • bada eta bada orduan
  • bada eta bada orduan
  • bada eta bada orduan

Zeinuen erregela[aldatu | aldatu iturburu kodea]

Zenbaki positiboen (+) eta negatiboen (-) biderkaduran eta zatiduran hurrengo erregelak betetzen dira:

  • Edozein zenbaki positibo bider beste zenbaki positibo bat, zenbaki positibo bat izango du emaitza.
  • Edozein zenbaki positibo bider zenbaki negatibo bat, zenbaki negatibo bat izango du emaitza.
  • Edozein zenbaki negatibo bider beste zenbaki negatibo bat, zenbaki negatibo bat izango du emaitza.

Erreferentziak[aldatu | aldatu iturburu kodea]

  1. Mirsky, Lawrence, 1990, p.72-3