Koaternioi

Wikipedia(e)tik
Hona jo: nabigazioa, Bilatu
Zenbakiak matematikan
Zenbaki multzoak
\mathbb{N}\sub\mathbb{Z}\sub\mathbb{Q}\sub\mathbb{R}\sub\mathbb{C}

Zenbaki arruntak \mathbb{N}
Zenbaki osoak \mathbb{Z}
Zenbaki arrazionalak \mathbb{Q}
Zenbaki irrazionalak
Zenbaki errealak \mathbb{R}
Zenbaki konplexuak \mathbb{C}
Zenbaki aljebraikoak
Zenbaki transzendenteak

Konplexuen hedadurak

Koaternioiak \mathbb{H}
Oktonioiak \mathbb{O}
Zenbaki hiperkonplexuak

Bestelakoak

Zenbaki kardinalak
Zenbaki ordinalak
Zenbaki lehenak
π = 3.141592654…
e = 2.718281828…
i unitate irudikaria
infinitua
Φ = 1,6180339887...

Zenbaki-sistemak

Zenbaki-sistema hamartarra
Zenbaki-sistema bitarra
Zenbaki-sistema hamaseitarra
Zenbaki-sistema zortzitarra

Koaternioiak zenbaki errealen hedadura da, z = a + bi + cj + dk motako zenbakiekin, non a, b, c eta d zenbaki errealak diren. Horrez gain, i, j, k zenbakiek baldintza hauek betetzen dituzte: \mathbf{i^2 = j^2 = k^2 = i j k = -1}.

Laburbilduta, biderketa-taula hau betetzen dute:

1 i j k
1 1 i j k
i i -1 k -j
j j -k -1 i
k k j -i -1

z koaternioiaren balio absolutua honela definitzen da:

\mathbf{|z| = \sqrt{a^2 + b^2 + c^2 + d^2}}

Koaternioien multzoa: \mathbb{H} = \left \{ a + bi + cj + dk : a, b, c, d \in \mathbb{R} \right \}
\subset \R^4

Koaternioien biderketak elkartze-legea eta banatze-legea betetzen ditu, baina ez trukatze-legea. Koaternioiek, batuketarekin eta biderketarekin, osatzen duten egitura aljebraikoa zatiketa duen eraztuna da.