Wikipedia, Entziklopedia askea
Gas idealen konstante unibertsala bariable desberdinak lotzen dituen konstante fisiko bat da; bereziki bolumena, presioa, tenperatura eta materia kantitatea lotzen ditu.
Gehienetan konstantea gas idealen ekuazioan erabiltzen da. (R)
P
V
=
n
R
T
{\displaystyle PV=nRT}
Gas idealaren modeloan molekulen bolumena zero dela onartzen da, eta partikulak euren artean interakzionatzen ez dutela.
Gasen konstante unibertsala ez da funtsezko konstante bat, arrazoi honegatik, unitate sistema praktikoenak hartuta, honek dira R-ren balioak:
R
=
{
=
0
,
08205746
[
a
t
m
⋅
L
m
o
l
⋅
K
]
=
62
,
36367
[
m
m
H
g
⋅
L
m
o
l
⋅
K
]
=
1
,
987207
[
c
a
l
m
o
l
⋅
K
]
=
8
,
314472
[
J
m
o
l
⋅
K
]
{\displaystyle R={\begin{cases}=0,08205746\mathrm {\left[{\frac {atm\cdot L}{mol\cdot K}}\right]} \\=62,36367\mathrm {\left[{\frac {mmHg\cdot L}{mol\cdot K}}\right]} \\=1,987207\mathrm {\left[{\frac {cal}{mol\cdot K}}\right]} \\=8,314472\mathrm {\left[{\frac {J}{mol\cdot K}}\right]} \\\end{cases}}}
R
=
8
,
314472
J
/
(
K
⋅
m
o
l
)
{\displaystyle R=8,314472\quad \mathrm {J/\left(K\cdot mol\right)} }
R
=
8
,
314472
⋅
10
−
3
k
J
/
(
K
⋅
m
o
l
)
{\displaystyle R=8,314472\cdot 10^{-3}\ \quad \mathrm {kJ/\left(K\cdot mol\right)} }
R
=
0
,
08205746
L
⋅
a
t
m
/
(
K
⋅
m
o
l
)
{\displaystyle R=0,08205746\quad \mathrm {L\cdot atm/\left(K\cdot mol\right)} }
R
=
8
,
205746
⋅
10
−
5
m
3
⋅
a
t
m
/
(
K
⋅
m
o
l
)
{\displaystyle R=8,205746\cdot 10^{-5}\quad \mathrm {m^{3}\cdot atm/\left(K\cdot mol\right)} }
R
=
8
,
314472
c
m
3
⋅
M
P
a
/
(
K
⋅
m
o
l
)
{\displaystyle R=8,314472\quad \mathrm {cm^{3}\cdot MPa/\left(K\cdot mol\right)} }
R
=
8
,
314472
L
⋅
k
P
a
/
(
K
⋅
m
o
l
)
{\displaystyle R=8,314472\quad \mathrm {L\cdot kPa/\left(K\cdot mol\right)} }
R
=
8
,
314472
m
3
⋅
P
a
/
(
K
⋅
m
o
l
)
{\displaystyle R=8,314472\quad \mathrm {m^{3}\cdot Pa/\left(K\cdot mol\right)} }
R
=
62
,
36367
L
⋅
m
m
H
g
/
(
K
⋅
m
o
l
)
{\displaystyle R=62,36367\quad \mathrm {L\cdot mmHg/\left(K\cdot mol\right)} }
R
=
62
,
36365
L
⋅
T
o
r
r
/
(
K
⋅
m
o
l
)
{\displaystyle R=62,36365\quad \mathrm {L\cdot Torr/\left(K\cdot mol\right)} }
R
=
83
,
14472
L
⋅
m
b
a
r
/
(
K
⋅
m
o
l
,
)
{\displaystyle R=83,14472\quad \mathrm {L\cdot mbar/\left(K\cdot mol,\right)} }
R
=
1
,
987
c
a
l
/
(
K
⋅
m
o
l
)
{\displaystyle R=1,987\quad \mathrm {cal/\left(K\cdot mol\right)} }
R
=
6
,
132440
l
b
f
⋅
f
t
⋅
K
−
1
⋅
g
−
m
o
l
−
1
{\displaystyle R=6,132440\quad \mathrm {lbf\cdot ft\cdot K^{-1}\cdot g-mol^{-1}} }
R
=
10
,
73159
f
t
3
⋅
p
s
i
⋅
∘
R
−
1
⋅
l
b
−
m
o
l
−
1
{\displaystyle R=10,73159\quad \mathrm {ft^{3}\cdot {psi}\cdot {}^{\circ }R^{-1}\cdot lb-mol^{-1}} }
R
=
0
,
7302413
f
t
3
⋅
a
t
m
⋅
∘
R
−
1
⋅
l
b
−
m
o
l
−
1
{\displaystyle R=0,7302413\quad ft^{3}\cdot atm\cdot {}^{\circ }R^{-1}\cdot lb-mol^{-1}}
R
=
2
,
2024
f
t
3
⋅
m
m
H
g
⋅
K
−
1
⋅
m
o
l
−
1
{\displaystyle R=2,2024\quad ft^{3}\cdot mmHg\cdot K^{-1}\cdot mol^{-1}}
R
=
8
,
314472
⋅
10
7
e
r
g
⋅
K
−
1
⋅
m
o
l
−
1
{\displaystyle R=8,314472\cdot 10^{7}\quad erg\cdot K^{-1}\cdot mol^{-1}}
R
=
1716
f
t
⋅
l
b
⋅
∘
R
−
1
⋅
s
l
u
g
−
1
{\displaystyle R=1716\quad ft\cdot lb\cdot {}^{\circ }R^{-1}\cdot slug^{-1}\;}
R
=
286
,
9
N
⋅
m
⋅
k
g
−
1
⋅
K
−
1
{\displaystyle R=286,9\quad N\cdot m\cdot kg^{-1}\cdot K^{-1}}
R
=
286
,
9
J
⋅
k
g
−
1
⋅
K
−
1
{\displaystyle R=286,9\quad J\cdot kg^{-1}\cdot K^{-1}\;}
R
=
0
,
08205746
d
m
3
⋅
a
t
m
/
(
K
⋅
m
o
l
)
{\displaystyle R=0,08205746\quad dm^{3}\cdot atm/\left(K\cdot mol\right)}
R
=
8
,
314472
⋅
10
−
5
m
3
⋅
b
a
r
/
(
K
⋅
m
o
l
)
{\displaystyle R=8,314472\cdot 10^{-5}\quad m^{3}\cdot bar/\left(K\cdot mol\right)}
[ 1]
[ 2]