Fibonacciren zenbakiak

Wikipedia(e)tik
Hona jo: nabigazioa, Bilatu
Fibonacciren zenbakien arabera eraikitzen den laukizuzena

Fibonacciren zenbakiak segida matematiko bat da, eta hurrengo baldintzak betetzen ditu:

 
  F(n):=
  \begin{cases}
    0             & \mbox{baldin eta } n = 0; \\
    1             & \mbox{baldin eta } n = 1; \\
    F(n-1)+F(n-2) & \mbox{baldin eta } n > 1. \\

 \end{cases}

Hau da, hasierako bi balioen ostean, zenbaki bakoitza aurreko bien batura da. Lehenengo Fibonacci zenbakiak (Fn), n = 0, 1, … ,tik hasita hauek dira:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711.

Batzuentan F1 = 1tik hasten da, baina berez F0 = 0tik hasten da.

Fibonacciren zenbakiak Leonardo Pisanoren omenez izendatzen dira horrela, Fibonacci moduan ezagutzen zena, nahiz eta lehenago Indian jada ezagutzen ziren.

Commonsen badira fitxategi gehiago, gai hau dutenak: Fibonacciren zenbakiak Aldatu lotura Wikidatan