Keras

Wikipedia, Entziklopedia askea
Jump to navigation Jump to search
Keras Logo.jpg Keras
Jatorria
Azken bertsioa 2.3.1
Ezaugarriak
Hizkuntza ingelesa
Programazio-lengoaia Python
Lizentzia MIT license Itzuli
Ekoizpena
Garatzailea François Chollet Itzuli
keras.io/
Iturri-kodea https://github.com/keras-team/keras

Keras Python programazio-lengoaiaz idatzita dagoen neurona-sare artifizialetarako liburutegia da, kode irekikoa. TensorFlow, Microsoft Cognitive Toolkit, Theano edo PlaidML tresnen gainean exekutatzeko gai da.[1][2] Neurona-sare sakonekin esperimentazio bizkorra ahalbidetzeko diseinatua, bere helburua erabilerraza, modularra eta hedagarria izatea da.[3] ONEIROS proiektuaren (Open-ended Neuro-Electronic Intelligent Robot Operating System) barruan garatu zen. Bere egile eta mantentzaile nagusia François Chollet da, Googleko ingeniari bat. XCeption neurona sare sakonen ereduaren egilea ere bada Chollet.[4]

2017an, Googleko TensorFlow taldeak TerasFlow-ren oinarrizko liburutegian Keras integratzea erabaki zuen.[5] Keras interfaze gisa diseinatu zuela azaldu zuen Cholletek, eta ez ikasketa automatikoko aplikazio autonomo giza. Goi mailako abstrakziozko multzo oso intuitibo bat eskaintzen du, ikasketa sakoneko ereduak erraz garatu ahal izateko, oinarrizko tresna edozein dela.[6] Microsoftek CNTK motorra gehitu dio Kerasi ere, CNTK v2.0 bidez eskuragarri.[7][8]

Ezaugarriak[aldatu | aldatu iturburu kodea]

Kerasek neurona-sareak eratzeko normalean erabiltzen diren hainbat bloketarako inplementazioak eskaintzen ditu, hala nola, geruzak, helburuak, aktibazio-funtzioak, optimizatzaileak, eta tresna ugari irudi eta testu-datuekin lana errazteko. Kodea GitHub-en ostatutzen da, eta laguntza-foro komunitarioak daude GitHub-eko gaien orrian eta Slack kanal batean.

Neurona-sare estandarrez gain, Kerasek laguntzak ditu konboluzio-sareetarako eta neurona sare errepikakorretarako. Beste laguntza batzuk ere onartzen ditu, hala nola, dropout (bertan behera uztea), batch-normalizazioa eta bateratzea.[9]

Kerasek erabiltzaileei modelo sakonak ekoizteko aukera ematen die telefono adimenduetan (iOS eta Android), webean edo Java makina birtualetan.[10] Gainera, ikasketa automatiko sakoneko ereduak modu banatuan entrenatzeko aukera ere ematen du, grafikoak prozesatzeko unitaterekin (GPU) eta tentsore prozesatzeko unitaterekin (TPU).[11]

Erabilera[aldatu | aldatu iturburu kodea]

Kerasek 200.000 erabiltzaile baino gehiago zituela esan zuen 2017ko azaroan.[10] KD Nuggets 2018 software-inkestan gehien aipatutako 10. tresna izan zen Keras, %22ko erabilerarekin.[12]

Erreferentziak[aldatu | aldatu iturburu kodea]

  1. «Backend - Keras Documentation» keras.io . Noiz kontsultatua: 2019-07-03.
  2. «Why use Keras - Keras Documentation» keras.io . Noiz kontsultatua: 2019-07-03.
  3. «Home - Keras Documentation» keras.io . Noiz kontsultatua: 2019-07-03.
  4. (Ingelesez) Chollet, François (2016-10-07) Xception: Deep Learning with Depthwise Separable Convolutions . Noiz kontsultatua: 2019-07-03.
  5. (Ingelesez) «Module: tf.keras | TensorFlow Core r1.14» TensorFlow . Noiz kontsultatua: 2019-07-03.
  6. (Ingelesez) «Good news, Tensorflow chooses Keras! · Issue #5050 · keras-team/keras» GitHub . Noiz kontsultatua: 2019-07-03.
  7. (Ingelesez) «Keras backend · Issue #797 · microsoft/CNTK» GitHub . Noiz kontsultatua: 2019-07-03.
  8. (Ingelesez) alexeyo «CNTK_2_0_Release_Notes - Cognitive Toolkit - CNTK» docs.microsoft.com . Noiz kontsultatua: 2019-07-03.
  9. «Core Layers - Keras Documentation» keras.io . Noiz kontsultatua: 2019-07-03.
  10. a b «Why use Keras - Keras Documentation» keras.io . Noiz kontsultatua: 2019-07-03.
  11. (Ingelesez) «Using TPUs | TensorFlow Core» TensorFlow . Noiz kontsultatua: 2019-07-03.
  12. (Ingelesez) Python eats away at R: Top Software for Analytics, Data Science, Machine Learning in 2018: Trends and Analysis . Noiz kontsultatua: 2019-07-03.

Gehiago irakurri[aldatu | aldatu iturburu kodea]

Ikus, gainera[aldatu | aldatu iturburu kodea]

Kanpo loturak[aldatu | aldatu iturburu kodea]