Brahmagupta

Artikulu hau Wikipedia guztiek izan beharreko artikuluen zerrendaren parte da
Wikipedia, Entziklopedia askea

Brahmagupta
Hindu astronomer, 19th-century illustration.jpg
Bizitza
JaiotzaBhinmal (en) Itzulic. 598
Herrialdea India
BizilekuaBhinmal (en) Itzuli
Heriotzac. 668 (74/75 urte)
Jarduerak
Jarduerakmatematikaria eta astronomoa

Brahmagupta (jaio c. 598, hil c. 668), indiar matematikari eta astronomoa izan zen. Astronomiari buruzko Brāhmasphuṭasiddhānta izeneko lanean matematika eta aljebrari buruzko hainbat atal idatzi zuen. Zenbaki negatiboak erabili zituen lehena izan zen eta oinarrizko lau eragiketa matematikoak enuntziatu zituen.

Bizitza[aldatu | aldatu iturburu kodea]

Brahmagupta, berak adierazi zuenez, K. o. 598. urtean jaio zen. Brahmagupta Indiako ipar-sartaldeko Bhillamalan bizi izan zen Harsharen jaurgoan. Horregatik, askotan, Bhillamalacarya (euskaraz: «Bhillamalako irakaslea») deitzen zaio. Gero Malwako Ujjaingo behatoki astronomikoko burua izan zen. Bertan matematikari eta astronomiari buruzko liburua idatzi zuen, Brāhmasphuṭasiddhānta («Egokiro Sortutako Brahmaren Jakinbidea») 628an, eta Khandakhadyaka («jateko hozka» edo «janari-mordoa») lan praktikoa 665ean. Bi liburu horien artean, Brāhmasphuṭasiddhānta da, zalantzarik gabe, garrantzitsuena.

Brahmaguptaren formula[aldatu | aldatu iturburu kodea]

Bere lanean, hirukote pitagorikoa eratzeko araua dago:

hori Babiloniako antzinako arauaren aldaketa izan arren, berak ezin hobeto ezagutu ahal izan zuena. Laukientzako eremuaren Brahmaguptaren formula, formulekin batera erabili zuen:

y

diagonaletarako, zenbaki arruntak diren alde, diagonal eta eremuak dauzkaten laukiak aurkitzeko.

Ekuazio zehaztugabeen teoria[aldatu | aldatu iturburu kodea]

Brahmaguptak, jakina, matematika berez atsegin zuen, ezen praktikatik kanpoko gauzak ezartzen baitzituen, hala nola haren laukiei buruzko emaitzak. Antza denez, bera ekuazio diofantiko linealari irtenbide orokorra ematen lehena izan zen:

con .

Ekuazio horrek emaitzak eduki ditzan, eta -ren zatitzaile komun handienaz zatitu behar da, eta Brahmaguptak bazekien, eta elkarrekiko zenbaki lehenak baldin badira, orduan, ekuazioaren emaitza guztiak honako formula hauek ematen dituztela:

,

Bertan zenbaki oso arbitrarioa da.

donde es un entero arbitrario.[1][2]

Erreferentziak[aldatu | aldatu iturburu kodea]

  1. Historia de la matemática, Carl B. Boyer. Alianza Editorial.
  2. Museo de la Informática y Computación Aplicada-tik hartutako edukia.

Kanpo estekak[aldatu | aldatu iturburu kodea]