Ekuazio

Wikipedia(e)tik
Hona jo: nabigazioa, Bilatu

Matematikan, ekuazioa ezezagun bat edo gehiago dituen berdintza aljebraikoa da, adibidez x+4=7, ekuazio bat da, non x, ezezaguna den. Zenbakizko berdintzetan (2+3=5, esaterako) ez bezala, ekuazioa ez da orohar egiazkoa ezezagunaren edozein baliotarako (aurreko ekuazioan adibidez, x=5 	ext{,  orduan}  5+4
e 7). Horrela, ekuazioa ebaztea berdintza betetzen duten ezezagunen balioak aurkitzea da, ezezaguna aurkitzea alegia, ekuazioa identitate edo zenbakizko berdintza bihurtzeko (aurreko ekuazioan, x+4=7 	ext{,  orduan}  x=7-4=3). Horrela, x, bakandu edo askatu egin dela esaten da.

Oro har, ezezagunak x, y, z, etab. hizkiez adierazten dira, eta konstanteak alfabetoko lehenengo hizkiez (a, b, c, eta abar).

Alfabeto-egiunez finkatzeko ideia, ezezagunak konstanteetatik desberdintzeko, François Viète matematikari frantziarrarena izan zen. François Viètek erabili zituen kontsonanteak aldagaietarako eta bokalak konstanteetarako.

Ekuazio motak[aldatu | aldatu iturburu kodea]

  • Aldagai edo ezezagun bakarreko ekuazioa: ezezagun horren balio egokiarentzat bakarrik egiaztatzen den ekuazioa; adibidez, 3x+1=10; x=3.
  • Aljebrako ekuazioa: ezezaguna aljebrako eragiketa arruntetara (batuketa, kenketa, biderketa, erroketa&) mendekotua duen ekuazioa. Aztertu ziren lehenengo ekuazioak aljebrakoak izan ziren; horretarako, hainbat polinomio berdindu ziren beren artean, balio ezezagunak argitzeko.
  • Ekuazio diferentziala, ezezagunak derinatu moduan agertzen direnean;
  • Integralen ekuazioa.
  • Aplikazio jakina duten ekuazioak ere badaude, aplikazio horren izenarekin izendatzen direnak; adibidez, mugimendu-ekuazioak, denbora-ekuazioak.

Erreferentziak[aldatu | aldatu iturburu kodea]

Commonsen badira fitxategi gehiago, gai hau dutenak: Ekuazio Aldatu lotura Wikidatan