Lankide:Otej/Proba orria

Wikipedia, Entziklopedia askea

Historia[aldatu | aldatu iturburu kodea]

Bigarren Mundu Gerran Bletchley Park-en mezuak deszifratzeko lanean ari zirenean garatu zuten "Aquarius" makina kriptanalitikoak memoria dinamiko kableatua erabiltzen zuen.[1][2]

64MB Toshiba SDRAM

Gerora, Toshiba korporazioak RAM memoria dinamiko bat asmatu zuen "Toscal" BC-1411 kalkulagailu elektronikorako. 1967an, Toshiba enpresako Tomohisa Yoshimaru-k eta Hiroshi Komikawa-k asmakizuna patentatu zuten.[3][4] Lehen DRAM horrek transistore bipolarrak erabiltzen zituen eta nukleo magnetikozko memoriak baino errendimendu hobea eskaintzen zuen. Hala ere, garai hartan oso erabiliak zen nukleo magnetikozko memoria baino garestiagoa zenez, ezin zuen harekin lehiatu.[5] Ordurako, kondentsadoreak beste memoria batzuren diseinuan erabili ziren, hala nola Atanasoff-ek eta Berry-k asmatutako "Atanasoff-Berry computer" ordenagailuaren danborrean,[6][7] "Williams tube" hodian[8][9] eta "Selectron tube" hodian.[10]

1966an, IBMko "Thomas J. Watson Research Center" ikerketa zentroko Robert Dennard ikerlaria SRAM (Static RAM) memoriaren alternatiba baten bila lanean ari zen. MOS teknologia ikertzen ari zela, SRAMak behar zituen 6 MOS transistoreen ordez, bit-aren 0 eta 1 balioak adierazteko kondentsadore bakarra eta transistore bakarra erabiltzea posiblea zela aurkitu zuen. Horri esker, DRAM memorietarako transistore bakarreko gelaxkak garatu ahal izan zituzten. 1968an, asmakizuna patentatu egin zuen.[11][12] MOS DRAM memoriak nukleo magnetikozko memoriak baino errendimendu hobea eskaintzen zuen, merkeagoa zen eta energia gutxiago kontsumitzen zuen.[13]

1969an, "Advanced Memory Systems" enpresak (Sunnyvaleko, Kalifornia) MOS DRAM txipak merkaturatu zituen. 1024 biteko txipa zen eta hainbat enpresa teknologia berri hori erabiltzen hasi ziren: Honeywell, Raytheon, Wang Laboratories, etab. Urte berean, Honeywell enpresak haiek garatutako hiru transistoreko memoria-gelaxkako DRAM memoria bat diseinatzeko eskatu zion Intel enpresari. Horrela sortu zen 1970. urte hasieran "Intel 1102" DRAM txipa. Hala ere, i1102-ak arazoak ematen zituenez, diseinua hobetzeko lanean hasi zen Intel enpresa ezkutuan, Honeywell-ekin gatazka saihesteko. 1970eko urrian, merkatuan eskuragarri egon zen lehen DRAM memoria agertu zen: "Intel 1103", Joel Karp-ek diseinatua eta Pat Earhart-ek aurkeztua.[14] Diseinu berri horrek ere hasieran arazoak eman zituen eta errendimendu txikikoa zen. Denborarekin, txipak ekoizteko erabiltzen ziren maskarak hobetu zituzten eta arazoak konpondu ziren. Barbara Maness eta Judy García aritu ziren maskaren arazoa konpontzen.[15]

i1103, Intel 1103 DRAM txipa
i1103-ren memoria gelaxka

1970eko hamarkadaren hasieran, MOS teknologian oinarritutako memoriek nukleo magnetikozko memoriei aurrea hartu zieten; teknologia berria memorien fabrikazioan nagusi bilakatu zen.[16]

1973an Robert Proebsting-ek diseinatutako Mostek "MK4096" DRAM memoria aurkeztu zuten. 4 Kilobit-eko memoria zen eta gelaxkak helbideratzeko sisteman errenkadak eta zutabeak multiplexatuak zituen lehena izan zen. Helbideratze-sistema horrek pin (orratz) berbera erabiltzen zuen memoria-gelaxkaren helbidearen beheko erdia eta goiko erdia jasotzeko, bi zatien artean bus-zikloak txandakatzen zituelarik. Hori aurrerapen handia izan zen, helbideratze-lerroen kopurua erdira jaistea lortu zelako eta beraz, memoria txip-ean orratz kopuru txikiagoa behar zelako. Ondorioz, txipa merketu egin zen eta abantaila ekonomikoa memorien biltegiratze-ahalmena handituz joan zen neurrian gero eta nabarmenagoa egin zen. "MK4096" DRAM memoriaren diseinua sendoa zen. 1976an, 16 Kilobit-eko dentsitateko "Mostek MK4116 DRAM" memoria aurkeztu zuten eta munduko merkatuaren %75a gainditu zuen.[17]

1980ko hamarkadaren hasieran, memorien dentsitatea 64 Kbitera igotzea lortu zenean, fabrikatzaile japoniarrek ordura arte memorien merkatuan lider izan zirenei aurrea hartu eta merkatua mundu-mailan menderatu zuten 80ko eta 90eko hamarkadetan zehar. 1985ean, Intel-eko Gordon Moore-k DRAM-en produkzioa etetea erabaki zuen. 1986rako, Ameriketako Estatu Batuetako txip-fabrikatzaile guztiek DRAM memorien fabrikazioa eten zuten. Memoria-txipen negoziotik kanporatzeko helburuarekin, esportazioetan dumpinga egiten zietela leporatu zieten Japoniako enpresei Estatu Batuetako erdieroaleen fabrikatzaileek .[18]

Prezioak asko jaitsi ziren: 18 hilabetetan, 64Kbit-eko txipak 3,50 dolarreko preziotik 35 zentimora jaitsi ziren, eta AEBko enpresa askok arazo ekonomiko larriak izan zituzten. 1985eko abenduaren 4an, AEBetako Nazioarteko Merkataritzaren Administrazioak haien aldeko epaia eman zuen.[19]

1992an, Samsung enpresa korearrak garatutako atzipen sinkronoko memoria hegazkorra (SDRAM) (ingelesez, Synchronous Dynamic Random-Access Memory) aurkeztu zen. Merkaturatu zen lehen SDRAM txipa "KM48SL2000" izan zen eta 16 Mb-eko ahalmena zuen.[20] 1998an Samsung-ek lehen DDR SDRAM memoria-txipa merkaturatu zuen, 64 Mb-ekoa.[21]

2001ean, DRAM memorien ekoizle japoniarrek dumpinga leporatu zieten korearrei.[22]

2002an, AEBetako ordenagailu-fabrikatzaileek DRAMen prezioen ezarpena salatu zuten.

Memoria-gelaxkaren diseinua[aldatu | aldatu iturburu kodea]

DRAM memorian bit-a adierazteko karga elektriko positibo edo negatiboa gordetzen da kondentsadoreez osatutako egitura batean (egitura kapazitiboa). Karga gordetzeko kapazitantzia ematen duen egiturak eta haren atzipena kontrolatzen duten transistoreek "DRAM gelaxka" osatzen dute. Gelaxka horiek dira DRAM memorien oinarrizko blokeak; haiekin osatzen dira "matrize" edo "taula" terminoez adierazten diren memoria-egiturak.

DRAM-gelaxkaren definizio horren aldaerak dauden arren, DRAM moderno gehienetan erabiltzen dena transistore batez eta kondentsadore batez osatutakoa da (1T1C, 1-transistor 1-capacitor). Memorian idazteko eragiketa egin nahi denean transistoreak kondentsadorean korronte elektrikoa sartzen uzten du; irakurketa egiteko, aldiz, kondentsadorea deskargatzen uzten du. Transistoreak potentzia maximizatzeko eta korronte elektrikoaren galera minimizatzeko diseinatuta daude.

Kondentsadoreak bi terminal ditu: bata atzipena ahalbidetzen duen transistorera konektatuta dago eta bestea lurrera edo VCC/2 (elikatze-tentsioaren erdira). 1eko logikoa adierazteko, kondentsadorean +VCC/2-ko tentsioa gorde behar da eta 0 (zero) logikoa adierazteko -VCC/2-koa. Metatutako karga elektrikoa coulomb-etan neurtzen da.[23]Horrela, 1eko logikoa (boolearra) da, eta zero logikoa , non karga den (coulomb-etan neurtua) eta kapazitantzia (Farad-etan neurtua).

1eko logiko bat irakurtzeko edo idazteko, tentsioa VCC-en eta atzipena ematen duen transistorearen VTH atalase-tentsioaren batura baino altuagoa den balio batera eraman behar da. Tentsio horri "ponpatutako VCC" deritzo (VCCP, VCC pumped).

Kondentsadorea deskargatzeko behar den denbora kondentsadorean gordetako balio logikoaren araberakoa da. Horrela, 1eko logikoa gordeta duen kondentsadorea deskargatzen hasten da atzipen-transistorearen ateko terminaleko tentsioa VCCP balioaren gainetik dagoenean. Zero logikorako, aldiz, kondentsadorea deskargatzen hasten da atearen terminaleko tentsioa VTH balioaren gainetik dagoenean.[24]

Segurtasuna[aldatu | aldatu iturburu kodea]

Datuen iraupena[aldatu | aldatu iturburu kodea]

Memoria dinamiko mota honetan gordeta dagoen informazioa mantentzeko, berez beharrezkoa da elikadura-iturria konektatuta izatea eta sarri freskatzea (64 ms-ko sarritasunez, kasu askotan). Hala ere, gelaxketako kondentsadoreek gordeta duten balioa denbora gehiagoz mantentzeko ahalmena dute, batez ere tenperatura baxuetan. Batzuetan, baldintza batzuk betetzen badira, DRAM memorian gordetako datu gehienak berreskura daitezke, freskatzea zenbait minututan egin gabe egon arren.

Hori dela eta, nahiz eta teorian ordenagailua itzaltzean memoria nagusiko informazioa suntsitu egiten den, itzali ondoren berehala piztuz gero memoriako informazioa berreskuratzea posiblea izan daiteke. Beste aukera bat, DRAM memoria ordenagailutik ateratzea eta hoztea da, datuen iraupena luzatzeko eta beste ordenagailu batean informazioa irakurri ahal izateko.

Horrek guztiak segurtasun arazoak sor ditzake. Ordenagailuaren aurkako eraso mota horri hotzeko abio-eraso esaten zaio. Halako erasoek diskoa zifratzeko sistemak engainatu izan dituzte, hala nola, kode irekiko "TrueCrypt" sistema, Microsoft-en "BitLocker Drive Encryption" eta Apple-en "FileVault".[25]

Memoria hondatzea[aldatu | aldatu iturburu kodea]

Memoria dinamikoa, definizioz, aldizka freskatu egin behar da. Gainera, memoria dinamikoan irakurtzea eragiketa suntsitzailea da, irakurtzeko eragiketa burutu den ilarako gelaxkak kargatu behar direlako.

Prozesu horiek ez badira ondo burutzen, freskatze-prozesuak edo irakurketa-eragiketak akatsak eragin ditzake. Izan ere, gelaxka bateko karga ihesi eta inguruko gelaxketara hedatzeko arriskua existitzen da. Hori gertatuko balitz, irakurketa edo freskatzea egin den errenkadaren ondoan edo gertu dagoen beste batean perturbazio-errorea sor daiteke.

1970eko hamarkadaren hasieran lehen DRAM memoriak merkaturatu zirenean ("Intel 1103"), lehen perturbazio-erroreak sumatu ziren. DRAM txipen ekoizleek errore horiek ekiditeko teknikak erabili izan dituzten arren, 2014an egindako ikerketa batek erakutsi zuen 2012an eta 2013an ekoitzitako txip batzuek perturbazio-erroreak izan zitzaketela.[26]

  1. (Ingelesez) Sale, Tony. «Other electronic code breaking machines» www.codesandciphers.org.uk (Noiz kontsultatua: 2023-12-31).
  2. (Gaztelaniaz) Browne, Valerie. «Una mirada hacia atrás: dispositivos de memoria volátil históricos» www.rocelec.mx (Noiz kontsultatua: 2023-12-31).
  3. «Toshiba "Toscal" BC-1411 Desktop Calculator» www.oldcalculatormuseum.com (Noiz kontsultatua: 2023-12-22).
  4. (Ingelesez) Yoshimaru, Tomohisa; Komikawa, Hiroshi. (1967). Memory circuit. (US3550092A, United States Patent) (Noiz kontsultatua: 2023-12-31).
  5. «1966: Semiconductor RAMs Serve High-speed Storage Needs | The Silicon Engine | Computer History Museum» www.computerhistory.org (Noiz kontsultatua: 2023-12-31).
  6. (Gaztelaniaz) UAM, Biblioteca Politécnica. «Biblioguías: Biografías de ingenieros: inventos e inventores: John V. Atanasoff» biblioguias.uam.es (Noiz kontsultatua: 2023-12-31).
  7. (Gaztelaniaz) «¿Quién inventó el primer ordenador?» OpenMind BBVA 2020-04-10 (Noiz kontsultatua: 2023-12-31).
  8. (Ingelesez) «Williams-Kilburn Tubes» www.computerhistory.org (Computer History Museum (CHM)) (Noiz kontsultatua: 2023-12-31).
  9. (Ingelesez) «The Williams Tube and the "Manchester Baby," the First Operational Stored-Program Computer Runs its First Program : History of Information» www.historyofinformation.com (Noiz kontsultatua: 2023-12-31).
  10. (Ingelesez) «Selectron tube» Academic Dictionaries and Encyclopedias (Noiz kontsultatua: 2023-12-31).
  11. (Ingelesez) Yoshimaru, Tomohisa; Komikawa, Hiroshi. (1970-12-22). Memory circuit. (Noiz kontsultatua: 2023-12-27).
  12. Dennard, Robert H.. (1968-06-04). Field-effect transistor memory. (Noiz kontsultatua: 2023-12-31).
  13. «MOS DRAMs Replace Magnetic Core Arrays - CHM Revolution» www.computerhistory.org (Noiz kontsultatua: 2023-12-31).
  14. Katz, Jeff. (2007). «Notes from Interview with John Reed Regarding Development of Intel 1103 1Kb DRAM» web.archive.org (Noiz kontsultatua: 2023-12-31).
  15. (Ingelesez) «The Invention of Intel 1103 Computer Memory» ThoughtCo (Noiz kontsultatua: 2023-12-31).
  16. «1970: Semiconductors compete with magnetic cores | The Storage Engine | Computer History Museum» www.computerhistory.org (Noiz kontsultatua: 2023-12-31).
  17. Reverse-engineering the classic MK4116 16-kilobit DRAM chip. (Noiz kontsultatua: 2023-12-31).
  18. (Ingelesez) Sanger, David E.. (1985-08-03). «JAPAN CHIP 'DUMPING' IS FOUND» The New York Times ISSN 0362-4331. (Noiz kontsultatua: 2023-12-27).
  19. (Ingelesez) Sanger, David E.. (1985-08-03). «JAPAN CHIP 'DUMPING' IS FOUND» The New York Times ISSN 0362-4331. (Noiz kontsultatua: 2023-12-31).
  20. (Ingelesez) Electronic Design. Hayden Publishing Company 1993 (Noiz kontsultatua: 2023-12-29).
  21. (Ingelesez) «Events | Newsroom» Samsung Semiconductor Global (Noiz kontsultatua: 2023-12-27).
  22. «CNN.com - Japanese chip makers say they suspect dumping by Korean firms - October 25, 2001» edition.cnn.com (Noiz kontsultatua: 2023-12-31).
  23. (Ingelesez) Keeth, Brent; Baker, R. Jacob; Johnson, Brian; Lin, Feng. (2007-12-04). DRAM Circuit Design: Fundamental and High-Speed Topics. John Wiley & Sons, 22-24 or. ISBN 978-0-470-18475-2. (Noiz kontsultatua: 2023-12-27).
  24. DRAM circuit design: fundamental and high-speed topics. J. Wiley & Sons 2008 ISBN 978-0-470-18475-2. (Noiz kontsultatua: 2024-01-02).
  25. (Ingelesez) J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten.. (2008). «Lest We Remember: Cold Boot Attacks on Encryption Keys» Center for Information Technology Policy, Princeton University (Noiz kontsultatua: 2024-01-02).
  26. Yoongu Kim; Ross Daly; Jeremie Kim; Chris Fallin; Ji Hye Lee; Donghyuk Lee; Chris Wilkerson; Konrad Lai; Onur Mutlu (June 24, 2014). "Flipping Bits in Memory Without Accessing Them: DRAM Disturbance Errors" (PDF). ece.cmu.edu.