Baliokidetasun-erlazio

Wikipedia, Entziklopedia askea
Jump to navigation Jump to search
5 elementuko multzo batean posible diren 52 baliokidetasun-erlazioen matrize logikoak; eremu koloredunek batekoa eta eremu txuriek zerokoa adierazten dutelarik.

Multzo-teorian eta algebran baliokidetasun-erlazio batek multzo bateko elementuen arteko erlazio bat definitzen du, elementuak euren artean baliokidetasun klaseetan antolatuz partizio bat sortuz. baliokidetasun-erlazioa erlazio bitar bihurkor, simetriko eta iragankorra da.

Definizioa[aldatu | aldatu iturburu kodea]

multzo ez huts bat eta erlazio bitar bat emanik, balikoidetasun erlazioa izango da, baldin eta soilik baldin honako propietate hauek betetzen baditu:

  • Bihurkorra da, hau da, multzoko elementu oro bere buruarekin erlazionaturik dago.

  • Simetrikoa da, multzoko elementu bat multzoko beste elementu batekin erlazionaturik egonik, ere -rekin erlazionaturik egonez.

  • Iragankorra da: multzoko elementu bat multzoko beste elementu batekin erlazionatuta badago, eta beste elementu hori hirugarren batekin; hasierako elementua hirugarrenarekin erlazionatuta dago:

Idazkera[aldatu | aldatu iturburu kodea]

multzoko eta -ren arteko baliokidetasun-erlazioa edo moduetan idazten da erlazioa definiturik badago eta , edo , hala ez bada.

multzoan ezarritako baliokidetasun-erlazioa, bikote ordenatuaren bidez adierazten da.

Aritmetika modularrean ( baliokide modulu ) bezala adierazten da.

Baliokidetasun klasea[aldatu | aldatu iturburu kodea]

baliokidetasun-erlazioak azpimultzo disjuntuak definitzen ditu multzoan. elementua emanik, -rekin erlazionaturik dauden elementu guztiek honako klase hau definitzen dute:

Baliokidetasun-erlazio batek sortzen dituen klase kopuruari ordena deritzo; kopurua finitua bada ordena finituko erlazioa izanik.

Adibideak[aldatu | aldatu iturburu kodea]

Baliokidetasun erlazioa eta klaseak[aldatu | aldatu iturburu kodea]

multzoan  erlazioak betetzen badira, erlazioaren baliokidetasun klaseen multzoak honako hauek dira:

Erlazio honetako baliokidetasun klase guztien multzoa da.

Baliokidetasun erlazioak[aldatu | aldatu iturburu kodea]

Erreferentziak[aldatu | aldatu iturburu kodea]

  • Brown, Ronald, 2006. Topology and Groupoids. Booksurge LLC. ISBN 1-4196-2722-8.
  • Castellani, E., 2003, "Symmetry and equivalence" in Brading, Katherine, and E. Castellani, eds., Symmetries in Physics: Philosophical Reflections. Cambridge Univ. Press: 422-433.
  • Robert Dilworth and Crawley, Peter, 1973. Algebraic Theory of Lattices. Prentice Hall. Chpt. 12 discusses how equivalence relations arise in lattice theory.
  • Higgins, P.J., 1971. Categories and groupoids. Van Nostrand. Downloadable since 2005 as a TAC Reprint.
  • John Randolph Lucas, 1973. A Treatise on Time and Space. London: Methuen. Section 31.
  • Rosen, Joseph (2008) Symmetry Rules: How Science and Nature are Founded on Symmetry. Springer-Verlag. Mostly chpts. 9,10.
  • Raymond Wilder (1965) Introduction to the Foundations of Mathematics 2nd edition, Chapter 2-8: Axioms defining equivalence, pp 48–50, John Wiley & Sons.

Ikus, gainera[aldatu | aldatu iturburu kodea]