Lankide:Artizartar/Desintegrazio erradiaktibo

Wikipedia, Entziklopedia askea

Desintegrazio erradioaktiboa nukleo atomikoetan gertatzen den prozesu bat da, zeinaren bitartez energia galtzen duten erradiazio gisa. Erradiazioaren izaeraren arabera, hiru desintegrazio mota bereiz daitezke: alfa desintegrazioa, beta desintegrazioa eta gamma desintegrazioa. Izan ere, alfa zein beta desintegrazioetan partikulak igortzen dira eta gamma desintegrazioan, aldiz, fotoiak. Desintegrazio mota edozein dela ere, nukleo atomiko ezegonkorrak dituen materialari erradioaktibo deritzo.

Desintegratzen den isotopo erradioaktiboari "guraso" esaten zaio eta prozesuak gutxienez nukleido "seme" bat sortzen du. Gamma desintegrazioetan eta egoera nuklear kitzikatuen arteko barne-transformazioetan izan ezik, desintegrazio erradioaktiboak transmutazio nuklear baten bidezko seme bat du ondorio, zeinak protoi edo neutroi kopuru desberdina (edo biak) baitu.

Desintegrazio erradioaktiboa ausazko prozesua da, hau da, lagin batean dauden atomoen artean ezinezkoa da aldez aurretik jakitea zein atomo desintegratuko den.[1][2] Zientzialariei zaila izan omen zitzaien aurresangarritasunik eza onartzea teoria kuantikoa garatu aurretik.[1] Hala ere, lagin baten ikuspuntu makroskopikotik posible da desintegrazio-tasaren neurri bat ematea desintegrazio-konstantearen edo erdibizitzaren bidez. Atomo erradioaktibo desberdinen erdibizitzen arteko aldea magnitude-ordena anitzekoa izan daiteke: joktosegundo batzuetatik (hidrogeno-1 adibidez), unibertsoaren adina baino 160 trilioi aldiz handiagora arte (telurio-128 kasu).[3][4]

Lurrean erradioaktiboak diren 34 isotopo daude naturan. Isotopo horiek eguzki-sistema sortu baino lehenagokoak dira eta nukleido primordial izenaz ezagunak dira.[5] Nukleido primordialak eguzki-sistema sortu zeneko izarrarteko ingurunean presente zeuden eta nukleosintesiaren bidez sortu ziren izarretan, supernobek unibertsoan zehar barreiatu zituztelarik. Uranioa edo torioa nukleido horien adibide dira. Bestalde, badaude bizitza laburragoa duten 50 isotopo erradioaktibo inguru nukleido primordialen desintegrazio-kateen produktuak direnak edota aribideko prozesu kosmogenikoen ondorio direnak, karbono-14 adibidez, zeina izpi kosmikoen bidez atmosferan sortzen baita. Gainera, isotopo erradioaktiboak era artifizialean ere sor daitezke, partikula-azeleragailuetan edota erreaktore nuklearretan esate baterako.[6]

Desintegrazio erradioaktiboaren aurkikuntza[aldatu | aldatu iturburu kodea]

Henri Becquerel, erradioaktibitatearen aurkitzailea.

Erradioaktibitatea Henri Becquerel zientzialari frantziarrak aurkitu zuen 1896an. Becquerel fosforeszentzia aztertzen ari zen: materialek energia argi gisa xurgatzen eta igortzen duten fenomenoa. Material fosforeszenteek argia igortzen dute argitan denbora jakin batez egon ondoren. Becquerel-en helburua fosforeszentziak X izpiekin izan zezakeen lotura aztertzea zen, X izpiak aurreko urtean (1895) aurkitu baitzituen Wilhelm Roentgen fisikari alemaniarrak, eta oraindik ez ziren izpi horien propietateak guztiz ezagutzen.

Becquerel-ek mineral fosforeszenteak paper beltzean bildutako argazki-xaflekin ukipenean jarri zituen. Mineralek ez zuten xaflan inolako aldaketarik eragin, uranioa erabili zuen arte; orduan, argazki-xafla belztu egin zen. Emaitza ikusita, argi zegoen uranioak nolabaiteko erradiazio ikusezina igortzen zuela, paper beltza zeharkatu eta argazki-xaflari eragiten ziona, xafla argitan egongo balitz bezala. Izpi hauei "Becquerel-en izpiak" deritze. Alabaina, izpien jatorria ezezaguna zen. Lehenik, fenomeno honek fosforeszentziarekin zerikusirik ez zuela ondorioztatu zuen Becquerel-ek, uranioa aurretik ez baitzen argiarekin kontaktuan egon. Gainera, uranioak igortzen zuena X izpiak ez zirela frogatu zuen esperimentu baten bidez. Esperimentu horretan, uranioaren igorpena eremu magnetiko baten eraginpean desbideratu egiten zela behatu zuen, eta ordurako jakina zen X izpiei kanpo-eremu magnetikoek ez dietela eragiten, neutralak direlako.[7]

Aurkikuntza honen ondotik, Becquerel-ek beste esperimentu batzuk egin zituen erradiazioa aztertzeko xedez. Uranioak kanpo-eraginen independentea den erradiazio sarkorra igortzen duela frogatu zuen. Horrez gain, erradiazioak gorputz elektrifikatuak deskargatu ditzakeela erakutsi zuen, eta, ondorioz, aireko molekulak ionizatu ditzakeela airea eroale elektriko bilakatuz.[8]

Marie eta Pierre Curie laborategian.

Pierre eta Marie Curie-k erradioaktibitatearen inguruan egindako ikerketak bereziki grarrantzitsuak izan dira eta kimikan, eta baita medikuntzan ere (izan ere, "erradioaktibitate" hitza aurrenekoz Marie-k erabili zuen, zenbait atomok espontaneoki igorritako igorpen sarkor eta ionizatzaileak izendatzeko). Batetik, 1898an polonioa eta radioa lehenengo aldiz isolatzea lortu zuten; bestetik, uranioak igorritako izpien eragina aztertu zuten. Azken honek aplikazio ugari ditu minbiziaren tratamenduan eta medikuntza nuklearrean.[9]

1899an, Ernest Rutherford-ek esperimentuen bidez erakutsi zuen substantzia erradioaktiboek mota anitzetako erradiazioa igortzen dutela, eta alfa eta beta izpiak bereizi zituen. Hurrengo urtean, 1900ean alegia, Paul Villard kimikari frantziarrak gamma izpiak aurkitu zituen.[8]

1902an, Ernest Rutherford eta Federick Soddy lehenengoz ohartu ziren desintegratzen diren elementu guztiek formulfisikan a matematiko berdintsua betetzen dutela, eta desintegrazio erradioaktiboaren ondorioz elementu batetik besterako transmutazioa gertatzen dela. Transmutazioa arautzen duten zenbait lege enpiriko topatu zituzten, eta hauei jarraiki, agerian geratu zen elementu kimiko guztiak oinarrizko partikula batzuez osaturik daudela.[10]

Desintegrazio erradioaktiboaren aurkikuntzak, beste hainbatekin batera, kolokan jarri zuen XX. mendera arte nagusi zen mekanika klasikoa eta teoria berri baten beharra azaleratu zen: mekanika kuantikoa. Gainera, erradioaktibitatearen ikerketek bidea ireki diote gaur egungo fisikaren aplikazio ugariri.

Desintegrazio motak eta adibideak[aldatu | aldatu iturburu kodea]

Erradioaktibitatearen fenomenoa aurkitu eta gutxira igorpen erradioaktiboak hiru mota desberdinetan sailkatu ziren:

Alfa desintegrazioa[aldatu | aldatu iturburu kodea]

Nukleo bateko protoien eta neutroien lotura-energia handia izan arren, nukleoa apur dezaketen prozesuak gerta daitezke. Horrelakoetan, nukleoiz osatutako sistema lotu bat igor dezake jatorrizko nukleoak. Halako sistema lotu bat sortzeko probabilitatea murriztuz doa beharrezkoak diren nukleoi kopurua handitu ahala. Horregatik, 2 protoiz eta 2 neutroiz osatutako nukleidoen igorpena beste nukleido astunagoen igorpena baino ohikoagoa da. 2 protoiz eta 2 neutroiz osatutako nukleidoari alfa partikula deritzo eta nukleo batek alfa partikula bat igortzen duen prozesuari alfa desintegrazio deritzo. Historikoki, alfa desintegrazioarekiko ezegonkorrak ziren nukleoek igortzen zituzten partikulei alfa partikula izena eman zitzaien Rutherford-ek 1908an helio-4 nukleo gisa identifikatu baino lehen eta izena mantendu egin da.[11] Nukleo batek alfa partikula bat igorritakoan, bere zenbaki atomikoa 2 unitate txikitzen da eta masa-zenbakia, aldiz, 4 unitate. Alfa desintegrazioa sorrarazten duen elkarrekintza fisikoa elkarrekintza nuklear bortitza da.

Beta desintegrazioa[aldatu | aldatu iturburu kodea]

Nukleoa hautsi beharrean, nukleoaren gehiegizko protoi edo neutroi kopurua murriztu daiteke protoi bat neutroi bihurtuz edo alderantziz. Neutroia desintegratzean, nukleoan protoi bat sortzen da eta elektroi bat eta elektroi antineutrino bat igortzen dira. Prozesu horri "beta minus" (β) deritzo. Protoia desintegratzean, aldiz, nukleoan neutroi bat sortzen da eta positroi bat eta elektroi neutrino bat igortzen dira. Beste prozesu horri "beta plus" (β+) deritzo. Aurreko biez gain, beste beta desintegrazio bat ere badago: elektroi-harrapaketa. Elektroi-harrapaketan, atomo bateko nukleotik hurbil dagoen elektroi bat nukleoko protoi batekin batu daiteke neutroi bat osatuz. Elektroi-harrapaketa atomo astunetan gertatzen da batez ere; izan ere, nukleo astunek erradio handiagoa eta orbitalen erradio txikiagoa izan ohi dute.

Aipatutako hiru prozesuetan, kargaren kontserbazioaren printzipioa betetzen da. Alfa desintegrazioan ez bezala, beta desintegrazioa sortzen duen elkarrekintza fisikoa elkarrekintza nuklear ahula da.

Gamma desintegrazioa[aldatu | aldatu iturburu kodea]

Nukleo batek nukleoiderik igorri gabe eta beta desintegraziorik jasan gabe energia txikiagoko egoera batera aldatu dezake bere burua. Hori egitean, nukleoa egoera kitzikatu batetik energia txikiagoko maila batera aldatzen da eta maiztasun oso handiko fotoi bat igortzen du. Fotoiaren energia nukleoaren bi egoeren arteko energia diferentziaren berdina da (fotoiaren igorpenak nukleoari eragindako atzerapena arbuiatuz gero). Gamma desintegrazioa, alfa edo beta desintegrazioa gertatu ondoren eman ohi da, desintegrazio horiek egoera kitzikatuetan uzten baitituzte nukleido semeak.

Desintegrazio erradioaktiboaren formulazio matematikoa[aldatu | aldatu iturburu kodea]

Osasunerako arriskuak[aldatu | aldatu iturburu kodea]

Aplikazioak[aldatu | aldatu iturburu kodea]

Ikus, gainera[aldatu | aldatu iturburu kodea]

Erreferentziak[aldatu | aldatu iturburu kodea]

  1. a b Krane, Kenneth S.. (1988). Introductory nuclear physics. Wiley ISBN 0-471-80553-X. PMC 15628946. (Noiz kontsultatua: 2020-11-07).
  2. Choppin, Gregory R.,. Radiochemistry and nuclear chemistry. (Fourth edition. argitaraldia) ISBN 978-0-12-397868-4. PMC 859381735. (Noiz kontsultatua: 2020-11-07).
  3. «Half Life for all the elements in the Periodic Table» periodictable.com (Noiz kontsultatua: 2020-11-07).
  4. Grupen, Claus.. (2010). Introduction to radiation protection : practical knowledge for handling radioactive sources. Springer ISBN 978-3-642-02586-0. PMC 663097564. (Noiz kontsultatua: 2020-11-07).
  5. (Ingelesez) «What is Primordial Radionuclide - Definition» Radiation Dosimetry 2019-12-14 (Noiz kontsultatua: 2020-11-07).
  6. (Ingelesez) Rouvray, Dennis. «Exploring the outer reaches» Chemistry World (Noiz kontsultatua: 2020-11-08).
  7. «The Discovery of Radioactivity» www2.lbl.gov (Noiz kontsultatua: 2020-11-07).
  8. a b (Ingelesez) «Atom - Discovery of radioactivity» Encyclopedia Britannica (Noiz kontsultatua: 2020-11-07).
  9. L'Annunziata, Michael F.. (2007). Radioactivity : introduction and history. Elsevier ISBN 978-0-08-054888-3. PMC 173503194. (Noiz kontsultatua: 2020-11-07).
  10. (Ingelesez) «Physical science - Radioactivity and the transmutation of elements» Encyclopedia Britannica (Noiz kontsultatua: 2020-11-07).
  11. Cottingham, W. N.. (2001). An introduction to nuclear physics. (2nd ed. argitaraldia) Cambridge University Press ISBN 0-511-04046-6. PMC 56761496. (Noiz kontsultatua: 2020-11-11).