Artikulu hau "Kalitatezko 1.000 artikulu 12-16 urteko ikasleentzat" proiektuaren parte da

Polinomio

Wikipedia, Entziklopedia askea
Jump to navigation Jump to search

Matematikan, polinomioa aldagai batez edo gehiagoz eta zenbait konstantez osaturiko adierazpen matematiko mugatu bat da. Aldagaiak eta konstanteak batuketaz, kenketaz eta biderketaz elkartzen dira, eta aldagai berretzaileek ez-negatibo eta osoak izan behar dute. Adibidez, polinomioak honako hauek dira:

Beste hauek, ordea, ez dira polinomioak, berretzaile negatibo edo ez-osoak dituztelako:

Gaur egun polinomioak adierazteko erabiltzen dugun notazioa XV. mendean garatu zen. Notazio hori baino lehen, hitzen bitartez idazten ziren. "Arithmetic in Nine Sections" aljebra-liburuan, adibidez, ikus dezakegu hitzezko notazio hori. La géometrie liburuan (1637), René Descartes matematikariak proposatu zuen: konstanteak alfabetoaren lehenengo hizkiez adieraztea (a, b, c, d...) eta ezezagunak azken hizkiez (x,y,z).

Batugaiak lau baino gutxiago badira, izen hauek jasotzen dituzte polinomioek: monomio (batugai bakarra), binomio (bi batugai) eta trinomio (hiru batugai).

Monomioa[aldatu | aldatu iturburu kodea]

Monomioa gai bakarreko adierazpen aljebraikoa da. Gai hori zenbakien eta aldagaien arteko biderkadura da. Zenbakiei koefiziente deritze ere eta monomioaren hasieran idazten ohi da. Adibidez:

Aplikazioak[aldatu | aldatu iturburu kodea]

Polinomioa funtsezko kontzeptua da aljebran. Matematikan, funtzioak hurbiltzeko erabiltzen dira. Kimikan eta fisikan aplikazio handiak dituzte, baita ekonomian eta kriptografian ere.

Definizio aljebraikoa[aldatu | aldatu iturburu kodea]

Aldagai bakarreko polinomioak[aldatu | aldatu iturburu kodea]

Polinomioari, ezezagun bakarra daukanean, aldagai bakarreko polinomio deritzo. Adibidez,

Aldagai anitzeko polinomioak[aldatu | aldatu iturburu kodea]

Ezezagun bat baino gehiago daukanean, polinomioari aldagai anitzeko polinomio deritzo. Adibidez,

Polinomioaren maila[aldatu | aldatu iturburu kodea]

Ezezagun bakarreko monomioetan, aldagaiaren berretzailea da monomioaren maila. Ezezagun bat baino gehiagoko monomioetan, aldiz, aldagai guztien berretzaileen batura da maila. Adibidez,

  • , monomioaren maila 1 da.
  • , monomioaren maila 5 da.
  • , polinomioaren maila 3 da.

Bereiz ditzakegu bi kasu berezi:

  • Polinomio konstantea: , monomioaren maila 0 da (x0=1 baita); beraz, zero mailako polinomioak konstante ez-nuluak izango dira.
  • Polinomio nulua: , polinomioaren maila da.

Polinomio baten maila haren monomioek dauzkaten mailetatik altuenaren berdina da, adibidez:

  • , polinomioaren maila 2 da.
  • , polinomioaren maila 3 da.
  • , polinomioaren maila 4 da.
  • , polinomioaren maila 7 da.

Eragiketak polinomioekin[aldatu | aldatu iturburu kodea]

Polinomioa puntu batean ebaluatzea[aldatu | aldatu iturburu kodea]

Edozein polinomio p puntu batean ebaluatzeko, indeterminatuaren lekuan p puntua ordezkatzea besterik ez da egin behar. Lortzen dugun emaitzari polinomioaren zenbakizko balioa[1] deritzo. Adibidez,

  • polinomioa x=2 puntuan ebaluatzeko, zera egingo dugu: ; kasu honetan, x=2 puntuari dagokion P(x) polinomioaren zenbakizko balioa 74 da.
  • polinomioa (x,y) = (-2,1) puntuan ebaluatzeko:  ; kasu honetan, (x,y)=(-2,1) puntuari dagokion P(x,y) polinomioaren zenbakizko balioa 19 da.

Batuketa eta kenketa[aldatu | aldatu iturburu kodea]

Monomioen batuketa edo kenketa egin ahal izateko monomioak antzekoak izan behar dira; hau da, gai aljebraiko (aldagaien zatia) berbera izan behar dute. Kasu horretan, gai aljebraikoa mantentzen da eta koefizienteen batuketa edo kenketa egiten da. Adibidez:

  • eta monomioak izanda, eta
  • eta izanda, eta
  • (ezin dira batu monomioak, antzekoak ez direlako)

Polinomioen arteko batuketa edo kenketa egiteko, antzekoak diren monomioak batu edo kendu behar ditugu. Adibidez,

  • eta izanda,

eta

  • eta izanda,

eta

Biderketa[aldatu | aldatu iturburu kodea]

Monomioen arteko biderketa egiteko, koefizienteak biderkatu eta indeterminatu berdinen mailak batu behar ditugu. Adibidez,

  • eta monomioak izanda,
  • eta monomioak izanda,

Bi polinomioen arteko biderketa egiteko, polinomio baten gai bakoitza beste polinomioaren gai guztiekin biderkatu behar da, eta ondoren, maila bereko terminoak batu edo kendu. Adibidez,

eta polinomioak izanda,

Identitate nabarmenak[aldatu | aldatu iturburu kodea]

Sakontzeko, irakurri: «Identitate (matematika)»

Adibideak:

Zatiketa[aldatu | aldatu iturburu kodea]

Monomioen koefizienteak zatituz eta indeterminatu berdinen mailak kenduz lortzen da. Adibidez,

Zenbaki errealekin egindako zatiketak polinomioekin egitekotan, zatikizunaren mailak zatitzailearen maila baino handiagoa edo berdina izan beharko du. Kasu horretan, zatiketa egiten ikasteko adibide honi jarraituko diogu: eta polinomioak izanda, lortzeko:

Ruffiniren erregela[aldatu | aldatu iturburu kodea]

Sakontzeko, irakurri: «Ruffiniren erregela»

Zatiketa baten zatitzailea (x+r) edo (x-r) erakoa bada, orduan zatiketa Ruffiniren bidez egin ahal dugu.

zatikizun eta zatitzaile izanda,urrats hauei jarraituko diegu:

1. P(x) polinomioaren koefizienteak ordenaturik idatzi behar dira. Eta ondoren, lerro bat beherago, zatitzailea den x-r binomioko r jarri behar da, irudiko marra laguntzaileekin batera:

    |        an        an-1        ...        a1         a0
    |                                    
  r |                                    
----|---------------------------------------------------------
    |                                    
    |  
                                 

2. Ezkerreko lehenengo koefizientea behera eraman, hura aldatu gabe:

    |        an        an-1        ...        a1         a0
    |                                    
  r |                                    
----|---------------------------------------------------------
    |      an=
    |
    |      bn-1                                
    |

3. Behera pasatutako koefiziente hori r balioaz biderkatu eta polinomioaren hurrengo koefizientearen azpian jarri:

  |        an        an-1        ...        a1         a0
    |
  r |                bn-1r
----|---------------------------------------------------------
    |        an
    |
    |      = bn-1                                
    |

4. Zutabe bereko bi balio hauen batuketa egin:

    |        an        an-1        ...        a1         a0
    |
  r |                  bn-1r
----|---------------------------------------------------------
    |        an     an-1+(bn-1r)
    |
    |      = bn-1     = bn-2                                
    |

5. 3. eta 4. pausoak errepikatu lerroa bukatu arte:

   |        an        an-1        ...        a1         a0
    |
  r |                  bn-1r       ...        b1r        b0r
----|---------------------------------------------------------
    |        an     an-1+(bn-1r)   ...       a1+b1r       a0+b0r
    |
    |      = bn-1     = bn-2       ...       = b0        = s

Adibidez:

Ohartu behar da x+1 binomioa x-(-1) bihurtzen dela, x-r erakoa izateko:

1.

Koefizienteak bere lekuan jarri:

    |     2     3     0     -4
    |                                    
 -1 |                                    
----|----------------------------
    |                                    
    |

Ohartu behar da polinomioan x terminoaren koefizientea 0 dela.

2.

Lehenengo koefizientea behera eraman:

    |     2     3     0     -4
    |                                    
 -1 |                                    
----|----------------------------
    |     2                              
    |

3.

-1×2=-2 egin


    |     2     3     0     -4
    |                                    
 -1 |          -2                         
----|----------------------------
    |     2                              
    |

4.

3-2=1

    |     2     3     0     -4
    |
 -1 |          -2
----|----------------------------
    |     2     1
    |

5.

Lerroa bukatu arte jarraituz:

    |     2     3     0        -4
    |
 -1 |          -2    -1         1
----|-------------------------------
    |     2     1    -1         -3
    |{zatidura koefizienteak}{hondarra}

Beraz:

da eta hondarra -3

Faktore komuna ateratzea[aldatu | aldatu iturburu kodea]

Sakontzeko, irakurri: «Faktorizazio»

Polinomio batean faktore komuna atera ahal izateko, faktore hori batugai guztietan egon behar da[2].

Polinomioen erroak[aldatu | aldatu iturburu kodea]

Polinomio baten erroak P(x)=0 ekuazioaren soluzioak dira[3]. Beraz, a zenbaki bati P(x) polinomioaren erroa esaten zaio, baldin eta P(a)=0 bada. Adibidez:

polinomioa izanda,

eta ;

hori dela eta, x=0 polinomioaren erroa da eta x=1 ez.

M mailako polinomio batean, gehienez M erro aurki ditzakegu. Erroak berdinak edo desberdinak izan daitezke. Erro bat behin agertzen denean, erro sinple deritzo; erroa behin baino gehiagotan agertzen denean, aldiz, izen hauek jasotzen ditu erroak: erro bikoitza (bitan agertzen bada), hirukoitza (hiru alditan agertzen bada)...

Erreferentziak[aldatu | aldatu iturburu kodea]

Kanpo loturak[aldatu | aldatu iturburu kodea]

Wikimedia Commonsen badira fitxategi gehiago, gai hau dutenak: Polinomio Aldatu lotura Wikidatan