Edukira joan

Lankide:Leire Agirretxe/Proba orria

Artikulu hau "Kalitatezko 2.000 artikulu 12-16 urteko ikasleentzat" proiektuaren parte da
Wikipedia, Entziklopedia askea

Matematikan eta aljebra linealean ekuazio linealetako sistema bat, edo sistema lineal bat, gorputz edo eraztun trukakor batean definitutako ekuazio linealen multzo bat da (hau da, ekuazio guztiak lehenengo mailakoak dituen ekuazio-sistema). Hona hemen ekuazio linealetako sistema baten adibidea:

Ekuazio linealetako sistema hori ebaztearen helburua hiru ekuazioak betetzen dituzten eta ezezagunen edo aldagaien balioak aurkitzea da.

Ekuazio linealetako sistemen ebazpena aljebran garrantzi handiko gaia da.

Ekuazio linealetako sistemen problema matematikako problema zaharrenetarikoa da, eta aplikazio ugari ditu, hala nola seinale digitalen prozesaketan, estimazioan, aurresatean, programazio linealean eta zenbakizko analisiko problema ez-linealen hurbilketetan.

Oro har, m ekuazio lineal eta n ezezagun dituen sistema bat honela idatz daiteke:

non ezezagunak diren, eta zenbakiak, sistemaren gorputzaren gaineko koefizienteak. Sistema hori forma matrizialean berridatz daiteke:

Matrize bakoitza letra batez adierazten bada, honako adierazpena lortzen da:

Adierazpen horretan, A da mxn dimentsioko matrize bat; x, n luzerako zutabe-bektore bat, eta b, m luzerako zutabe-bektore bat. Mota honetako sistemetan Gauss-Jordan algoritmoa erabiltzen da, koefizienteak edozein gorputzetakoak izanda ere. A matrizea sistema lineal horren koefiziente-matrizea da; b, sistemaren gai askeen bektorea, eta x, sistemaren ezezagunen bektorea.

Sistema lineal errealak

[aldatu | aldatu iturburu kodea]

Atal honetan, gorputzaren gaineko ekuazio linealetako sistemen propietateak dira aztergai, hau da, koefiziente errealak dituzten ekuazio linealetako sistemak.

Adierazpen grafikoa

[aldatu | aldatu iturburu kodea]
Paraleloak ez diren bi planoren ebakidura zuzen bat da.

n ezezagun dituen sistema bat dagokion espazio euklidearrean irudika daiteke.

Bi ezezaguneko sistemetan, sistemaren espazioa plano bidimentsionala da, eta ekuazio bakoitza zuzen baten bidez adierazten da. Ekuazio horien bidez adierazitako zuzenek elkar mozten duten puntua (edo lerroa) da soluzioa. Zuzen guztiek elkar ebakitzen duten punturik existitzen ez bada, sistema bateraezina dela edo soluziorik ez duela esaten da.

Hiru ezezaguneko sistemen kasuan, berriz, espazio tridimentsionala da sistemaren espazioa, eta ekuazio bakoitza plano baten bidez adierazten da. Plano guztiek puntu batean elkar ebakitzen badute, puntu horren koordenatuak dira sistemaren soluzioa. Bestalde, plano guztien ebakidura zuzen bat edo plano bat bada, sistemak infinitu soluzio izaten ditu; zuzen edo plano horietako puntuen koordenatuak, hain zuzen ere.

Lau ezezagun edo gehiago dituzten sistemetan, adierazpen grafikorik ez da existitzen eta, ondorioz, problema hauek ez dira ikuspuntu horretatik aztertzen.

Sistema lineal motak

[aldatu | aldatu iturburu kodea]

Ekuazio-sistemak horiek onar dezaketen soluzio kopuruaren arabera sailka daitezke. Horrela, honako kasu hauek ager daitezke:

  • Sistema bateragarria: soluzioa du; kasu horretan, gainera, honako hauek bereiz daitezke:
    • Sistema bateragarri determinatua: soluzio bakarra du.
    • Sistema bateragarri indeterminatua: infinitu soluzio onartzen ditu.
  • Sistema bateraezina: ez du soluziorik.

Honela geldituko da sailkapena:

Sistema bateraezinak, geometrikoki, elkar ebaki gabe gurutzatzen diren (hiper)planoak edo zuzenak dira. Sistema bateragarri determinatuak, aldiz, puntu bakar batean elkar ebakitzen duten (hiper)planoen edo zuzenen multzoak dira. Azkenik, sistema bateragarri indeterminatuak zuzen batean zehar [edo orokorrean dimentsio txikiagoko (hiper)plano bat] elkar ebakitzen duten (hiper)planoak dira. Aljebraikoki, sistema bateragarri determinatuen ezaugarri nagusia koefiziente-matrizearen determinantea ezberdin zero dela da:

Sistema bat bateragarria den zehazteko algoritmoa

[aldatu | aldatu iturburu kodea]

Rouche-Frobenius-en teoremaren bidez, ekuazio linealetako sistema bat bateragarria den edo ez jakin daiteke, sistemaren koefizienteen matrizearen heina eta matrize zabalduaren heina berdinak ote diren begiratuz. Demagun sistema bateragarria dela. Aurretik aipatutako bi matrize horien heinak berdinak badira eta hein horiek ezezagun kopuruarekin bat badatoz, orduan sistema hori sistema bateragarri determinatua izaten da; bestelakoan, sistema bateragarri indeterminatua.

Sistema bateragarri indeterminatuak

[aldatu | aldatu iturburu kodea]

gorputzaren gaineko sistema bat bateragarri indeterminatua dela esaten da infinitu soluzio dituenean. Adibidez, sistema hau:

Bi ekuazioek malda duen eta puntutik igarotzen den zuzena adierazten dute, eta, horregatik, bi ekuazioek zuzen horretako puntu guztietan egiten dute bat. Sistema, batetik, bateragarria da, soluzioa baduelako eta zuzenek puntu amankomunak dituztelako, baina, bestetik, indeterminatua, infinitu puntu amankomun dituztelako.

  • Mota honetako sistemetan, soluzio orokorra aldagai bat edo gehiago beste aldagaien mende adieraztean datza. Sistema bateragarri indeterminatuetan, ekuazio bat, gutxienez, gainerakoen konbinazio lineal modura adieraz daiteke; hau da, linealki dependentea da.
  • Sistema bat bateragarri indeterminatua izango bada, baldintza beharrezko hauek bete behar dira: sistemaren matrizearen determinantea zero izatea eta matrize zabalduaren heina ezezagun kopurua baino txikiagoa izatea.

  • Aurreko bi baldintzetatik ondorioztatzen da sistema bateragarri indeterminatu baten soluzioen multzoa azpiespazio bektoriala dela. Eta azpiespazio bektorial horren dimentsioa 0 autobalioaren anizkoiztasunaren berdina izango da.

Sistema bateraezinak

[aldatu | aldatu iturburu kodea]

Sistema bat bateraezina dela esaten da soluziorik ez duenean. Adibidez, hurrengo sistema:

Grafikoki bi ekuazio horiek malda bera duten bi zuzen adierazten dituzte. Paraleloak direnez, ez dute elkar ebakitzen, hau da, ez da existitzen bi ekuazioak betetzen dituen punturik.

Matematikoki sistema bat bateraezina da sistemaren matrizearen heina matrize zabalduaren heina baino txikiagoa denean. Hori gertatzeko baldintza beharrezkoa sistemaren matrizearen determinantea zero izatea da.

Sistema linealen ebazpen-metodoak

[aldatu | aldatu iturburu kodea]

Bi ezezagun dituzten ekuazio linealetako sistemetarako, metodo aljebraiko errazak erabil daitezke sistema ebazteko: ordezkapen-, berdinketa- edo laburketa-metodoak.

Ordezkapen-metodoa

[aldatu | aldatu iturburu kodea]

Ordezkapen-metodoa ekuazio bateko ezezagun bat bakantzean oinarritzen da; koefiziente txikiena duena aukeratu ohi da, eta, ondoren, beste ekuazioan ordezkatzen da haren adierazpena.

Bi ezezagun baino gehiago dituzten sistemetan, aukeratutako ezezaguna ekuazio guztietan ordezkatu behar da, askatu dugun ekuazioan izan ezik. Egoera horretan, hasierako sistemak baino ezezagun bat gutxiago eta ekuazio bat gutxiago dituen sistema lortzen da, eta behin eta berriz aplikatu ahal izango da metodo hau. Adibidez, demagun honako sistema ebatzi nahi dela ordezkapen-metodoaren bidez.

Lehenengo ekuazioan, ezezaguna aukeratzen da, koefiziente txikiena duen ezezaguna delako (horrela eragiketak errazagoak izango dira), eta bakandu egiten da. Honako ekuazioa lortzen da:

Hurrengo urratsean ezezagunaren adierazpena beste ekuazioan ordezkatzen da, ezezagun bakarra duen ekuazio bat lortzeko:

Ekuazioa ebaztean, emaitza lortzen da; balio hori hasierako bi ekuazioetako batean ordezkatuz, lortzen da, eta, beraz, sistema ebatzita dago jada.

Berdinketa-metodoa

[aldatu | aldatu iturburu kodea]

Berdinketa-metodoa ordezkatze-metodoaren kasu partikular gisa ikus daiteke. Bi ekuazioetan ezezagun bera bakantzen da eta, ondoren, bi ekuazioen eskuineko atalak berdindu egiten dira.

Berdinketa-metodoan adibide gisa erabilitako sisteman, esaterako, ezezaguna bakantzen bada bi ekuazioetan, sistema hau lortzen da:

Ikus daitekeenez, bi ekuazioek berdintzaren ezker aldean adierazpen bera dute. Orduan, berdintzaren eskuineko atalak berdinak izango dira:

Behin ezezagunaren balioa lortuta, haren balioa hasierako ekuazioetako batean ordezkatuz, ezezagunarena lortzen da eta sistema ebatzita dago.

Laburketa-metodoa

[aldatu | aldatu iturburu kodea]

Metodo hau sistema linealetan erabili ohi da, eta gutxi dira sistema ez-linealetarako erabiltzen diren kasuak. Bi ekuazio edo ezezagun dituzten sistemen laburketa-metodoaren prozedura bi ekuazioetako bat aldatzean datza. Ezezagunetako batek bi ekuazioetan koefiziente bera baina aurkako zeinukoa izatea  (biderketak erabiliz, gehienetan) lortzea da lehen urratsa. Jarraian, bi ekuazioak batzen dira, eta ezezagun hori deuseztatzen; horrela, ezezagun bakarreko ekuazio bat lortzen da. Ekuazio horren ebazpen-metodoa erraza da.  

Adibidez, hurrengo sisteman:

Lehenengo ekuazioa bider egitea nahikoa da ezezaguna deuseztatzeko. Biderketa hori eginez, honako ekuazioa lortzen da:

Ekuazio hau sistemako bigarrenarekin batuz, ezezaguna deuseztatu, eta ekuazio berri bat lortzen da, eta kasu honetan, ekuazio horrek ezezagunaren balioa ematen digu zuzenean.

Hurrengo urratsean, ezezagunaren balioa ordezkatzen da hasierako bi ekuazioetako batean, eta -ren balioa lortzen da. Kasu honetan, -ren balioa lehenengo ekuazioan ordezkatuz:

Metodo grafikoa

[aldatu | aldatu iturburu kodea]
(2,4) puntutik igarotzen diren zuzenak

Sistemako ekuazio bakoitzaren grafikoa irudikatzean datza. Metodo hau, eskuz, koordenatu kartesiarretan baino ez da eraginkorra.

Ekuazio linealen sistema bat metodo honen bidez ebazteko jarraitu beharreko prozedura honakoa da:

  1. Bi ekuazioetan ezezagun bat bakandu.
  2. Lehen mailako ekuazio bakoitzari dagokion balio-taula eraiki.
  3. Bi zuzenak grafikoki adierazi koordenatu-ardatzetan.
  4. Azken urrats honetan hiru aukera daude:
    1. Bi zuzenek elkar ebakitzen badute, ebaki-puntuaren koordenatuak dira sistemaren soluzio bakarra; hau da, sistema bateragarri determinatua da.
    2. Bi zuzenak bat badatoz, sistemak infinitu soluzio ditu, zuzen horren puntu guztien koordenatuak, hain zuzen ere. Beraz, sistema bateragarri indeterminatua da.
    3. Bi zuzenak paraleloak badira, sistemak ez du soluzio errealik, baina baditu soluzio konplexuak.

Gauss Sebastian Velandia-ren metodoa

[aldatu | aldatu iturburu kodea]

Gauss-en metodoa n ekuazioko eta n ezezaguneko sistema bat sistema mailakatu bilakatzean datza. Sistema mailakatu horretan, lehenengo ekuazioak n ezezagun izango ditu; bigarrenak n-1 ezezagun, eta, modu berean jarraituz, azken ekuazioak ezezagun bakarra izango du. Horrela, erraza izango da azken ekuazioko ezezagunaren balioa kalkulatzea eta, hau erabiliz eta ekuazioetan gora igoz, gainerako ezezagunen balioak ere banan-banan kalkulatzea.

Gauss-en metodoaren adibidea

30 pertsona biltzen dira; hauen artean, gizonezkoak, emakumezkoak eta umeak daude. Emakumezkoen kopuruaren hirukoitzaren eta gizonezkoen kopuruaren batura umeen kopuruaren bikoitza baino 20 handiagoa da. Gainera, gizonezkoen eta emakumezkoen kopuruaren batura umeen kopuruaren bikoitza da. Planteatu eta ebatzi ekuazio-sistema.

  • Guztira, 30 pertsona dira.

  • Emakumezkoen kopuruaren hirukoitzaren eta gizonezkoen kopuruaren batura umeen kopuruaren bikoitza baino 20 handiagoa da.

  • Gizonezkoen eta emakumezkoen kopuruaren batura umeen kopuruaren bikoitza da.

Hiru ekuazioak elkartu eta ordenan jarri ondoren, sistema hau lortzen da:

Gauss-en metodoa aplikatu, bigarren eta hirugarren ekuazioei lehenengoa kenduta:

Kasu honetan, hirugarren ekuazioan ezezaguna desagertu da, eta ondorioz, ez da eragiketa gehiago egin behar. Beraz, hirugarren ekuaziotik   lortzen da:

Lortutako -ren balioa bigarren ekuazioan ordezkatuz, lortzen da:

-ren eta -ren balioak lehenengo ekuazioan ordezkatuz, lortzen da:

Beraz, sistemaren soluzioa hau da:


Gauss-Jordan algoritmoa
[aldatu | aldatu iturburu kodea]

Gauss-en metodoaren aldaera bat Gauss-Jordan algoritmoa izenez ezagutzen da, eta ekuazio linealetako sistemetan soilik aplika daiteke. Metodo hau sistemaren matrize zabaldua oinarrizko transformazioen bidez matrize triangular bihurtzean datza; horrela, ezezagun bakarreko ekuazio bat lortzen da, non haren balioa lerro bereko koefizientea den. Prozesu hau aurreko laburketa-prozesuaren antzekoa da, baina era iteratu batean exekutatuta, ordena algoritmiko bati jarraituz.

Gauss-Jordan algoritmoaren adibidea

Izan bedi honako ekuazio linealetako sistema hau:

Sistema horretako ekuazioak betetzen dituzten eta -ren balioak aurkitu nahi dira. Lehendabizi, matrize zabalduaren bidez, sistemaren koefizienteak adierazten dira. Era matrizialean, honela adierazten da:

Ondoren, ezezaguna deuseztatzen da. Horretarako, batetik, lehenengo lerroko koefizienteak rekin biderkatzen dira, eta emaitza bigarren lerroko koefizienteei batzen zaie; batura bigarren lerroan ordezkatzen da; eta, bestetik, hirugarren lerroko koefizienteei lehenengo lerrokoak batzen zaizkie eta batura hirugarren lerroan ordezkatzen da.

Hurrengo urratsean, ezezaguna deuseztatzen da lehenengo eta hirugarren lerroetan. Horretarako, batetik, bigarren lerroko koefizienteak rekin biderkatzen dira, eta emaitza lehenengo lerroko koefizienteei batzen zaie; batura lehenengo lerroan ordezkatzen da; eta, bestetik, bigarren lerroko koefizienteak rekin biderkatzen dira, emaitza hirugarren lerroko koefizienteei batzen zaie eta batura hirugarren lerroan jartzen da.

Azkenik, z ezezaguna lehenengo eta bigarren lerroetan deuseztatzen da. Horretarako, batetik, hirugarren lerroko koefizienteak rekin biderkatzen dira, eta lortutako emaitza lehenengo lerroko koefizienteei batzen zaie; batura lehenengo lerroan ordezkatzen da; eta, bestetik, hirugarren lerroko koefizienteak rekin biderkatzen dira, eta emaitza bigarren lerroko koefizienteei batzen zaie; batura bigarren lerroan ordezkatzen da.

Honakoa da matrize zabalduaren bidez lortzen den sistema:

Sistema honetatik abiatuz oso erraza da soluzioa lortzea.

Cramer-en erregela

[aldatu | aldatu iturburu kodea]

Determinante eta matrize adjuntuen bidez kalkulatzen den sistema bateragarri determinatuen soluzio bat ematen du Cramer-en erregelak. Honela kalkulatzen da soluzioa:

,

non baita A matrizean j zutabean b bektorea ordezkatzean lortzen den matrizea. Izan bedi bi ezezaguneko eta bi ekuazioko sistema:

Cramer-en erregelak soluzio hau ematen du:

,

Oharra: hasierako A matrizearen determinantea nulua denean, sistemaren soluzioak bi aukera ditu: infinitu soluzio izatea edo soluziorik ez izatea.

Zenbakizko algoritmoak

[aldatu | aldatu iturburu kodea]

Gauss-Jordan algoritmoa kasu zehatz askotan erabili ohi den zenbakizko algoritmo bat da. Hala ere, geroago, eraginkorragoak diren beste hainbat algoritmo diseinatu dira –ko konplexutasun konputazionalarekin (n sistemako ekuazio kopurua izanik). Metodo erabilienak hauek dira:

Ekuazio linealetan, soluzioak zenbaki arrazionalak, errealak, konplexuak edo gorputz bateko elementuak direnean, Cramer-en erregela erabil daiteke. Ekuazio asko dituzten sistemen kasuan, Cramer-en erregela konputazionalki oso garestia izan daiteke, eta, beraz, “ekonomikoagoak” (eragiketa gutxiago dituztenak) diren beste metodo batzuk erabili ohi dira, hala nola Gauss-Jordan algoritmoa eta Cholesky-ren deskonposaketa. Hauez gain, zeharkako metodo batzuk ere existitzen dira iterazioetan oinarritutakoak: esate baterako, Gauss-Seidel-en metodoa.

Soluzioen gorputza infinitua bada (zenbaki errealen edo konplexuen kasua), hiru egoera hauetako bat bakarrik gerta daiteke:

  • Sistemak ez du soluziorik (kasu honetan sistema gaindeterminatua dela edo bateraezina dela esaten da).
  • Sistemak soluzio bakarra du (sistema bateragarri determinatua).
  • Sistemak infinitu soluzio ditu (sistema bateragarri indeterminatua).

Ikus, gainera

[aldatu | aldatu iturburu kodea]