Zenbaki irrazional

Artikulu hau "Kalitatezko 2.000 artikulu 12-16 urteko ikasleentzat" proiektuaren parte da
Wikipedia, Entziklopedia askea

Gero agertu ziren
pi eta erro bi
IRRAZIONALA da
hitzak dio ongi
zatiki gisa idatzi
ezin dugun hori

Zenbakiak matematikan
Zenbaki multzoak

Zenbaki arruntak
Zenbaki osoak
Zenbaki arrazionalak
Zenbaki irrazionalak
Zenbaki errealak
Zenbaki konplexuak
Zenbaki aljebraikoak
Zenbaki transzendenteak

Konplexuen hedadurak

Koaternioiak
Oktonioiak
Zenbaki hiperkonplexuak

Bestelakoak

Zenbaki kardinalak
Zenbaki ordinalak
Zenbaki lehenak
π = 3.141592654…
e = 2.718281828…
i unitate irudikaria
infinitua
Φ = 1,6180339887...

Zenbaki-sistemak

Zenbaki-sistema hamartarra
Zenbaki-sistema bitarra
Zenbaki-sistema hamaseitarra
Zenbaki-sistema zortzitarra

Zenbaki irrazionala zenbaki erreal bat da, zenbaki arrazionalen multzokoa ez dena, hots, bi zenbaki osoren arteko zatidura moduan ezin idatz daitekeena. Zenbaki irrazionalek hamartar kopuru infinitua dute, eta ez dute periodorik. Zenbaki irrazionalen multzoa adierazten da.

Historia[aldatu | aldatu iturburu kodea]

Zuzenaren segmentu baten luzera neurtzean, emaitza gisa zatikizko zenbaki bat bakarrik sor dezakeenez, grekoek zenbakiak zuzenezko segmentuen luzerekin identifikatu zituzten. - Aipatutako moduan identifikatzean, zenbaki zatikatzaileena baino zenbaki mota zabalagoa kontsideratzeko beharra sortu zen. Matematikari pitagorikoen talde bateko kide den Hípaso de Metapontori egozten zaio neurketa-sistema batean unitate gisa hartzen den segmentu batekiko zuzen-segmentu neurtezinen existentzia. Izan ere, badira zuzen-segmentuak, sistema honetan neurtutako luzera zenbaki zatikia ez dutenak.

Adibidez, karratu batean, honen diagonala neurtezina da bere aldeekiko. Horrek konbultsio bat eragin zuen antzinako mundu zientifikoan. Garai hartako geometriaren eta aritmetikaren arteko haustura eragin zuen, azken hori, garai hartan, proportzionaltasunaren teorian oinarritzen baitzen, eta teoria hori magnitude neurgarriei bakarrik aplikatzen baitzitzaien.

Oztopoa gainditzen saiatu ziren zenbaki kontzeptua eta zuzen segmentu baten luzera bereiziz, eta azken hauek oinarrizko elementutzat hartu zituzten kalkuluak egiteko. Horrela, neurri-eredutzat hartutako unitatearekiko segmentu neurtezinei magnitude mota berri bat esleitu zieten: zenbaki irrazionalak, luzaroan egiazko zenbakitzat hartu ez zirenak.

Adibideak[aldatu | aldatu iturburu kodea]

Sailkapena[aldatu | aldatu iturburu kodea]

1.- Zenbaki aljebraikoak: koefiziente arrazionalak dituzten ekuazio polinomikoen erroak diren zenbaki irrazionalak. Adibidez, urrezko zenbakia, ekuazio aljebraikoaren ebazpenetako bat da.

2.- Zenbaki transzendenteak: Koefiziente arrazionalak dituzten ekuazio polinomikoen erro ez diren zenbaki irrazionalak. Adibidez, π eta e zenbaki transzendenteak dira. Funtzio transzendenteetatik datoz: trigonometrikoak, logaritmikoak eta esponentzialak. Zenbaki dezimal infinitu ez-periodikoak ausaz idaztean ere zenbaki irrazionalak sortzen dira: 0,193650278443757 ... eta 0,101001000100001 ..., esaterako.

Zenbaki transzendenteak deiturikoak nabarmendu behar ditugu inolako ekuazio aljebraikoren ebazpen ezin baitira izan. pi eta e zenbaki irrazional transzendenteak dira, erroketen bidez adieraz ezin direlako.

Zenbaki irrazionalen multzoa ez da zenbakarri, hau da, ezin da bijekzioan ipini zenbaki arrunten multzoarekin. Hedaduraz, zenbaki errealen multzoa ere ez da zenbakarri, zenbaki irrazionalen multzoa barnean hartzen baitu.

Notazioa[aldatu | aldatu iturburu kodea]

Ez da existitzen notazio aljebraiko unibertsala aipatzeko. Arrazoia da zenbaki Irrazionalen multzoa ez dela egitura aljebraikoa, naturalak edo arruntak (), osoak (), arrazionalak (), errealak () eta konplexuak () diren bezala eta zenbaki irudikariak aipatzeko ere balio duela, nahasketa sortu ahal duena.

Propietateak[aldatu | aldatu iturburu kodea]

  • Demagun dugula non den, honek inplikatzen du direla.
  • Zenbaki arrazional eta zenbakib irrazional baten batuketa edota kenketa zenbaki irrazionala da:
  • Zenbaki irrazional baten aurkakoa ere zenbaki irrazionala da:
  • Zenbaki arrazional (nulua ez dena) eta zenbaki irrazional baten arteko biderkadura zenbaki irrazional bat da:
  • Nulua ez den zenbkai arrazional baten eta zenbaki irrazional baten arteko zatiketaren emaitza beste zenbaki irrazional beta izango da:
  • Zenbaki irrazional baten alderantzizkoa irrazionala da:
  • Zenbaki arrunt ez-karratu perfektu baten erro karratua zenbaki irrazionala da.
  • Bi arrazionalen artean, gutxienez zenbaki irrazional bat dago.
  • Angelu baten arrazoi trigonometrikoak irrazionalak dira, horietako bat triangelu angeluzuzenaren bi alde arrazionalak badira salbu.
  • Zenbaki errealen tarte ireki batean dagoen edozein zenbaki irrazional, tarte horretako zenbaki errealen pilaketa-puntua da, baina baita zenbaki irrazionalen pilaketa-puntua ere.
  • Zenbaki irrazionalen multzoa zenbaki errealen multzoaren baliokidea da (kardinal bera dute hain zuzen ere).

Kanpo estekak[aldatu | aldatu iturburu kodea]