Artikulu hau "Kalitatezko 1.000 artikulu 12-16 urteko ikasleentzat" proiektuaren parte da

Zinematika

Wikipedia, Entziklopedia askea
Jump to navigation Jump to search

Zinematika (grezieraz κινεω, kineo, euskaraz higidura) fisikaren adar bat da, zeinak objektuen higidura deskribatzen eta aztertzen baitu, higidura hori sorrarazi duten kausak (indarrak) kontuan izan gabe. Gorputzek higitzean egiten duten ibilbidea deskribatzen du batez ere, eta, horretarako, bi magnitude fisikoz baliatzen da, azelerazioaz eta abiaduraz, bi magnitude horiek deskribatzen baitute objektu baten kokagunea nola aldatzen den denboraren arabera. Abiadura desplazamenduaren eta denboraren arteko zatiduraren bidez zehazten da, eta azelerazioa, berriz, abiadura-aldaketaren eta denboraren arteko zatiduraren bidez.[1]


Historia[aldatu | aldatu iturburu kodea]

Antzinako astronomo eta filosofo greziarrek deskribatu zuten lehen aldiz gorputzen higidura, baina higiduraren azalpen kualitatiboak egin zituzten soilik. Ia bi mila urte geroago, XVI. mendeko jakintsuek deskribapen zehatzagoak egin zituzten neurketa esperimentalen bitartez, hala nola Nikolas Kopernikok (1473-1543) eta Tycho Brahek (1546-1601).

Hurrengo mendean, 1605. urte inguruan, Galileo Galileik (1564-1642) erorketa askea aztertu zuen, eta baita plano inklinatuetakoa ere. Evangelista Torricellik (1605-1647), berriz, higiduraren geometria landu zuen, zikloidearen azterketaren bidez.

Halaber, funtsezkoa izan zen Johannes Keplerren (1571-1630) lana, planeten ibilbide eliptikoen legeak zehaztu baitzituen, eta zer esanik ez Isaac Newtonena (1643-1726), Philosophiae naturalis principia mathematica[2]  liburuan (1687) matematikoki azaldu baitzituen higiduraren legeak, bere izena daramaten hirurak hain zuzen. Dinamikaren esparruan ekarpena egiteaz gainera, grabitazio unibertsalaren legea ere sortu zuen Newtonek.

Zinematika modernoa, aldiz, Parisen jaio zen, Pierre Varignonek (1654-1746) hango Zientzien Akademian (Académie royale des sciences) definitu baitzituen lehen aldiz aldiuneko abiadura eta azelerazio kontzeptuak, 1700eko urtarrilaren 20an. Era berean, frogatu zuen posible dela aldiuneko abiadura kontuan hartuta azelerazioa lortzea kalkulu diferentzial sinple baten bidez.

Gerora, XVIII. mendearen bigarren erdialdean, Jean Le Rond d'Alembertek, Leonhard Eulerrek eta André-Marie Ampèrek ekarpen gehiago egin zizkioten zinematikaren alorrari. Besteak beste, Daniel Bernoulliren aldiuneko biraketa-zentroaren oinarrizko legea lantzen jarraitu zuten.

André-Marie Ampère (1775-1836).

Zinematika izenaren jatorriaz[aldatu | aldatu iturburu kodea]

André-Marie Ampère-k (1775-1836)  asmatu zuen zinematika izena, greziera zaharreko hitza ('kinema', euskaraz ‘higidura’edo ‘agitazioa’ esan nahi duena) eta atzizkia ('-ticos', euskaraz ‘horri buruzkoa’) elkartuz; alegia, zinematikak ‘higidurari buruzko jakintza-arloa’ adierazten du.

Fisika modernoaren hasierako urteetan orokortu zen fisikako kontzeptuak izendatzeko jatorri greziar edo latindarreko hitzen edo hitz-erroen konposizioak erabiltzea, horrela ordura arte ezagutzen ez ziren kontzeptu berriak termino berri horiekin izendatzeko. Ordutik hona hainbat termino zientifiko berri osatu edo asmatu dira era horretan, eta gaur egun termino horiek nazioartekoak direla esan dezakegu; izan ere, zientziaren arloan erabiltzen diren hizkuntza gehienetan onartuta daude, hori bai, hizkuntza bakoitzean bere arau estandarretan ohikoak diren aldaketa ortografiko-fonetikoak eginez. Adibidez, euskaraz zinematika terminoaz adierazten duguna, antzeratsu erabiltzen da inguruko hizkuntzetan, baina ortografia eta ahoskera desberdinekin: cinemática (es, gal), cinemàtica (cat), kinematics (en), cinématique (fr), kinematik (de). 

Zinematikako oinarrizko elementuak[aldatu | aldatu iturburu kodea]

Zinematika oinarrizko elementu eta kontzeptu batzuez baliatzen da objektuen higidurak aztertzeko. Hasteko, funtsezko kontzeptuak dira higikaria (zer higitzen den), espazioa (higidura non gertatzen den) eta denbora (higidura noiz gertatzen den). Horiez gain, higidura deskribatu eta aztertu behar denez, deskripzioa osatzeko behar-beharrezkoak dira erreferentzia-sistema (neurketak zein lekutatik egiten diren), sistema horretako behatzailea (neurketak nork egiten dituen) eta higidura bere osotasunean grafikoki deskribatzen duen ibilbidea (gorputza nondik, nora eta nola higitzen den espazioan). Banan-banan aztertuko ditugu jarraian.

Higikaria[aldatu | aldatu iturburu kodea]

Higikaria partikula bat edo partikula-multzo bat izan daiteke.  Partikula bakarreko kasua da sinpleena, eta kasu askotan erabiltzen da eredu modura, bereziki gorputza biraka ez dabilenean edota ibilbidea gorputzaren tamaina baino askoz handiagoa denean. Kasu horretan, partikularen zinematika aztertzen da, eta sinplifikatzeko, gorputza puntu bat balitz bezala kontsideratzen da.

Bestetik, partikula-multzoa gorputz zabala izan daiteke, eta horretan kontuan eduki behar da gorputzaren forma alda daitekeen edo ez. Horregatik, kontuan izanik higikari asko objektu solidoak direla, eredu teoriko sinplifikatu bat erabiltzen da askotan, solido zurruna deritzona, gorputz horren forma geometrikoa beti berbera dela esan nahi duena. Eredu teoriko horretan solido zurrunaren zinematika lantzen da.

Partikula-multzoa fluido bat denean, higiduraren azterketa korapilatsuagoa da, sistemako partikulak askatasun handiagoa baitaukate higitzeko. Horregatik, horrelako gorputzen higidura fluidoen mekanika deritzon arlo berezian aztertzen da.

Espazioa[aldatu | aldatu iturburu kodea]

Materia dagoen tokia edo higitzeko daukan lekuari esaten zaio espazio fisikoa. Izatez, fisikan erabiltzen den espazio kontzeptua fisikariek asmatutako sinplifikazio bat da, propietate bereziak dituena. Espazio horretan daude unibertsoko objektu material guztiak eta bertan gertatzen dira fenomeno fisiko guztiak; gainera, suposatzen da ezen fisikaren legeak berdin betetzen direla espazioko puntu guztietan.  

Mekanika klasikoan espazioak hiru dimentsio ditu, bizimodu arruntean kontsiderarzen ditugun gorputzen luzera, zabalera eta sakonerari dagozkionak, hain zuzen. Hiru dimentsio horiek kontuan izanik, espazioko puntuen arteko distantziak eta objektuen propietate geometrikoak zehazten dira, Euklides-ek asmaturiko geometria erabiliz: geometria euklidearra.


Praktikan, erregela metriko batez neurtuko ditugu espazio horretako puntuen arteko distantziak. Eta suposatuko dugu, halaber, espazio horrek propietate berberak dituela toki guztietan eta garai guztietan; kasurako, espazioko bi punturen arteko distantziak beti direla berberak edozein alditan. Bestelako hitzekin esanda, espazioa absolutua dela esango dugu.

Denbora[aldatu | aldatu iturburu kodea]

Oso zaila da denbora definitzea, baina guztiok ulertzen dugu intuitiboki zer den denbora kontzeptuak esan nahi duena: magnitude fisiko bat da, aldiune desberdinen arteko tartea (‘distantzia denborala’) adierazten duena eta erlojuarekin neurtzen dena. Materiaren aldaketak gertatzeko denbora pasatu behar da, eta beti aurrerantz doa, hau da, iraganetik etorkizunerantz. Mekanika klasikoan, denbora ere absolutua dela suposatzen da, alegia, espazio osoan dauden erloju guztiek denbora-tarte berberak neurtzen dituztela, eta behin sinkronizatu ondoren etengabe segitzen dutela sinkronizaturik.

Erreferentzia-sistema eta neurketa espazio-denboralak egiten dituen bertako behatzailea.

Erreferentzia-sistema eta behatzaile orojakile eta omnipresentea[aldatu | aldatu iturburu kodea]

Higitzen ari den gorputzak espazioan aldiune jakin batean duen posizioa finkatzeko, elkarrekin batera definitu beharreko bi elementu behar ditugu. Erreferentzia-sistema bat, puntua zein den zehazteko, eta behatzaile orojakile eta omnipresente bat, edozein tokitan gorputzaren posizioa (luzera-neurgailuaz neurtua) eta aldiunea (erlojuaz neurtua) zehazteko gaitasuna duena. Bistan da behatzaile ideal bat dela, gure imajinazioan sorturiko "jainko" imajinario bat, etengabe eta espazioko puntu guztietan gertatzen dena neurtzeko gai dena.


Erreferentzia-sistema jatorri-puntuaz eta hiru dimentsioko koordenatu-sistema kartesiarraz adierazi ohi da gehienetan, nahiz eta bestelako koordenatuak ere erabil daitezkeen (koordenatu zilindrikoak edo esferikoak, adibidez). Hortaz, puntua hiru osagaiez identifikatuko da. Aldi bakoitzean behatzaileak erlojuaz neurtuko du zein den aldiunea, eta gorputza aldiune horretan dagoen puntua izango da, lau zenbakiez identifikaturik: eta . Horrela, ba, lau zenbaki horien bidez  identifikatuko dugu gertakari puntual bakoitza, partikula non eta noiz egon den adieraziaz: . Partikularen zinematikaren kasuan, partikula non-noiz dagoen definitzen duen horri gertaera edo gertakari puntuala deituko diogu.

Zinematikan aukera dago edozein erreferentzia-sistema aukeratzeko. Fisikaren ikuspuntutik, sistema guztiak baliokideak dira naturako fenomeno fisikoak deskribatzeko, baina sistema desberdinetan, puntuen lau osagaiak desberdinak izan daitezke. Esate baterako, elkarrekiko higitzen ari diren bi erreferentzia-sistema kontsideratuko ditugu: eta . Gertakari puntual bat kontuan hartuz gero, sisteman beraren osagaiak izango dira eta sisteman, . Osagai horiek elkarrekin erlazionaturik daude, sistema batetik besterako transformazio-ekuazioen bidez.

Bi gertakari puntualen arteko distantzia espazio-denboralak bi erreferentzia-sistematan[aldatu | aldatu iturburu kodea]

Bi gertaera puntualen arteko distantzia espaziala eta denbora-tartea.

Interesgarria da aztertzea bi erreferentzia-sistema desberdin horietatik neurturiko zenbait magnituderen balioen arteko erlazioa, bereziki distantzia espazio-denboralen artekoak. Adibidez, higitzen ari den partikula baten kasuan, kontsidera ditzagun espazioko eta puntuetatik pasatzean partikulari dagozkion gertaera puntualen lau osagaiak eta erreferentzia-sistemetan. Hurrenez hurren, eta izango dira sisteman, eta eta sisteman.

Mekanika klasikoan espazioak geometria euklidearra duenez, hauxe izango da bi bi puntuen arteko distantzia espaziala bi sistemetan:

  • sisteman, .
  • sisteman, .
  • Eta gainera, mekanika klasikoan onartzen da dela.

Alegia, mekanika klasikoan onartzen da espazioko bi punturen arteko distantziak berberak direla edozein erreferentzia-sistematatik neurtuta. Horregatik esaten da espazioa absolutua dela.

Era berean, bi gertakari puntual horien arteko distantzia denborala (hau da, denbora-tartea) neurtzean, balio hauek lortuko ditugu bi sistemetan:

  • sisteman, .
  • sisteman, .
  • Mekanika klasikoaren ikuspuntutik, bi sistema desberdinetako behatzaileen erlojuak elkarrekin sinkronizaturik egon badira hasieratik, sinkronizaturik segituko dute etengabe. Horregatik, dela onartzen da. Bestela esanda, bi gertaeraren arteko denbora-tartea berdina izango da sistema batean eta bestean.

Horregatik esaten da mekanika klasikoaren denbora absolutua dela.

Nolanahi den, mekanika erlatibistan, bai distantzia espazialak eta bai denbora-tarteak neurtzean, balio desberdinak lortzen dira elkarrekiko higitzen ari diren sistemetatik. Horregatik esaten da espazioa eta denbora ez direla absolutuak, erlatiboak baizik.

Ibilbideko puntu bakoitzak adierazten du partikula non egon den aldiune zehatz batean.

Ibilbidea[aldatu | aldatu iturburu kodea]

Higitzen ari den gorputz puntuala erreferentzia-sistema batetik behatzean, denboran zehar espazioko puntu desberdinetatik pasatzen dela konturatuko gara. Higidura hori bere osotasunean kontsideratzean, abstrakzio bat eginez eta gorputzak espazioan izan dituen posizio guztiak batera harturik, gorputzaren higidura osoa irudika dezakegu espazioan. Horrela, lerro bat defini dezakegu, ibilbidea deituko duguna, eta gorputzaren higiduraren “historia” adieraziko diguna.

Hitz matematikoez azalduta, ibilbidea gorputzaren posizio guztien leku geometrikoa dela esaten da. Mekanika klasikoan lerro hori jarraitua da, eta bertako puntuak denboraren funtzioan adierazten dira: . Ibilbideko puntu bakoitzari dagokion posizio-bektorea honelaxe adieraziko da erreferentzia-sistema kartesiar batean:


Zinematikako magnitude fisikoak[aldatu | aldatu iturburu kodea]

Zinematikaren arloan erabili ohi diren magnitude fisiko nagusiak hauexek:

Posizio-bektorea[aldatu | aldatu iturburu kodea]

Erreferentzia-sistema jakin batean partikulak edozein aldiunetan duen kokapena definitzen du. Izenak berak dioenez, magnitude bektoriala da, eta partikularen higidura aztertzean, funtzio modura adierazten da, sinboloaz. Hiru osagai kartesiarren  bidez era honetan idatz daiteke:

Bistakoa denez, erreferentzia-sistema bakoitzean balio desberdina izango du: sisteman, ; sisteman, .

Desplazamendua[aldatu | aldatu iturburu kodea]

Partikula higitzen ari dela, bi aldiune desberdinetan, eta , posizio desberdinak izango ditu, eta hurrenez hurren (edo eta ). Definizioz, bi aldiune horien  arteko denbora-tartean partikulak izandako desplazamendua honako bektore hau da:

Bektore horren modulua bi puntuen arteko distantzia da:

Abiadura[aldatu | aldatu iturburu kodea]

Higitzen ari den partikularen abiadura, definizioz, posizio-bektorearen denborarekiko deribatua da. Bektore bat da, denboraren funtzioa dena, sinboloaz adierazten dena, edo nahiago bada, modura:

Edo osagaien bidez emanik:

Azelerazioa[aldatu | aldatu iturburu kodea]

Matematikoki hitz eginez, azelerazioa abiaduraren denborarekiko deribatua da. Bektore bat da, denboraren funtzioa dena, sinboloaz adierazten dena, edo nahiago bada, modura:

Higidura motak[aldatu | aldatu iturburu kodea]

Partikularen higidura askotarikoa izan daiteke, abiadura eta azelerazioaren balioen arabera. Hona hemen kasurik sinpleenak:

  • Azelerazioa nulua bada, abiadura bektorea konstantea izango da. Hortaz, norabide berean eta modulu berberaz higituko da etengabe, eta ibilbidea zuzena izango da: higidura zuzen uniformea gauzatuko da.
  • Azelerazio bektorea konstantea bada eta, gainera, abiadura bektorearen norabide berekoa bada, orduan ibilbidea zuzena izango da, norabide berekoa, baina abiaduraren modulua etengabe handituagotuz joango da: higidura zuzen uniformeki azeleratua izango dugu.
  • Azelerazioaren modulua konstantea bada eta etengabe abiadurarekiko norabide perpendikularra badu, ibilbidea behin errepikatuko den zirkunferentzia bat izango da eta higidura zirkular uniformea gauzatuko da. Kasu horretan, bestelako magnitude bat ere definitu ohi da, ibilbideko puntuari dagokion erradioan duen biraketa aztertzeko: abiadura angeluarra.
  • Azelerazio bektorea konstantea izanik, bektore hori abiaduraren eta ibilbidearen plano berean badago, orduan higidura parabolikoa gertatuko da.

Higiduraren neurketa eta erregistroa[aldatu | aldatu iturburu kodea]

Gaur egungo teknologiari esker, hainbat modutara neurtu eta erregistra dezakegu gorputzen higidura. Esate baterako, automobiletako aginte-koadroan aldiuneko abiadura neurtzen da takometroaren bidez; tresna horrek autoaren abiadura neurtzen du gurpilek segundo bakoitzean egiten dituen birabeteen kopurua zenbatuz, eta horrela gidariak etengabe daki zein abiaduratan doan. Bestalde, errepideetako abiadura kontrolatzeko, puntu jakin batzuetan trafiko-radarren bidez automatikoki neurtzen da ibilgailuen abiadura, horrela abiadura-mugatik gora doazen autoen jabeei isunak ezartzeko, zigor gisa. Azkenik, paseoan ateratzen diren oinezko ibiltariek podometroa erabil dezakete, pausoak zenbatzeko eta ibiltako distantzia kalkulatzeko.

Erreferentziak[aldatu | aldatu iturburu kodea]

  1.   Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew; Treiman, S. B. (1964-08) «The Feynman Lectures on Physics» Physics Today (8): 45–46 doi:10.1063/1.3051743 ISSN 0031-9228 . Noiz kontsultatua: 2018-12-22 .
  2. (Ingelesez)  Newton, Isaac (1687) Philosophiae naturalis principia mathematica .

Bibliografia[aldatu | aldatu iturburu kodea]

  • Fishbane, Paul (2008) Fisika zientzialari eta ingeniarientzat. 1. bolumena, (1.etik-21.era Gaiak) Universidad del País Vasco/Euskal Herriko Unibertsitatea ISBN9788490820308 PMC932800438.
  • Etxebarria Bilbao, Jose Ramon (arg.) Fisika orokorra (2. argitalpena) UEU, Bilbo (2003) ISBN 9788484380450.
  • Marcelo Alonso, Edward J. Finn (1976). Física. Fondo Educativo Interamericano. ISBN 84-03-20234-
  • UEU-ko Fisika Saila, Fisikaren Historia Laburra, Iruñea (1990). ISBN: 84-86967-27-9

Ikus gainera[aldatu | aldatu iturburu kodea]

Kanpo loturak[aldatu | aldatu iturburu kodea]

Wikimedia Commonsen badira fitxategi gehiago, gai hau dutenak: Zinematika Aldatu lotura Wikidatan